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Multizone shell model for turbulent wall bounded flows

Victor S. L’vov, Anna Pomyalov, and Vasil Tiberkevich
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 12 May 2003; published 28 October 2003!

We suggested a multizone shell~MZS! model for wall-bounded flows accounting for the space inhomoge-
neity in a piecewise approximation, in which the cross-sectional area of the flow,S, is subdivided intoj zones.
The area of the first zone, responsible for the core of the flow,S1.S/2, and the areas of the nextj zones,Sj ,
decrease toward the wall likeSj}22 j . In each j zone the statistics of turbulence is assumed to be space
homogeneous and is described by the set of shell velocitiesun j(t) for turbulent fluctuations of the scale
proportional to 22n. The MZS model includes a set of complex variablesVj (t), j 51,2, . . . ,̀ , describing the
amplitudes of the near-wall coherent structures of the scalesj;22 j and responsible for the mean velocity
profile. The suggested MZS equations of motion forun j(t) and Vj (t) preserve the actual conservation laws
~energy, mechanical, and angular momenta!, respect the existing symmetries~including Galilean and scale
invariance!, and account for the type of nonlinearity in the Navier-Stokes equation, dimensional reasoning, etc.
The MZS model qualitatively describes important characteristics of the wall-bounded turbulence, e.g., evolu-
tion of the mean velocity profile with increasing Reynolds numberRe from the laminar profile toward the
universal logarithmic profile near the flat-plane boundary layer asRe→`.

DOI: 10.1103/PhysRevE.68.046308 PACS number~s!: 47.27.Nz, 05.45.2a, 47.27.Eq
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I. INTRODUCTION

A. Background

Three simple turbulent flows—in a channel, in a pipe, a
near a flat plane—play a prominent role in our understand
of spatially inhomogeneous wall-bounded flows, similar
the celebrated role of developed homogeneous turbulenc
understanding the universal statistical behavior of fine-sc
turbulence. Along the long road toward understanding hom
geneous turbulence, there appeared various phenomeno
cal cascade models of turbulence~the Richardson-
Kolmogorov 1941 concept of turbulence and t
Kolmogorov 1962 log-normal and multifractal models of i
termittency!, many closure procedures~like the Kraichnan
direct interaction approximation!, and various field theoreti
cal approaches. Last but not least we have to mention
so-called shell models of turbulence~like the GOY shell
model @1,2# together with its ‘‘Sabra’’ improvement@3#, and
many others@4#!. For the recent development of shell mode
see the review by Biferale@5#. Separately, we want to men
tion Zimin’s shell model~@22#; see also@6,7#!, which was
derived from the Navier-Stokes equation~NSE! using a vec-
tor wavelet decomposition@8# of the velocity field and in-
volves no empirical orad hocparameters.

Shell models are systems of ordinary differential eq
tions which mimic the statistically homogeneous isotro
turbulent velocity field in some interval of scales~say, within
some ‘‘shell’’ in the Fourier space! by one or a few ‘‘shell
velocities’’ un(t) @4#. The shell models have the same~qua-
dratic! type of nonlinearity as the NSE, respect the cons
vation of energy~in the unforced, inviscid limit!, and have
built-in locality of interaction of neighboring scales, reflec
ing scale-by-scale energy transfer toward dissipative sca
Surprisingly, the shell models allow us to mimic almost e
erything we know~experimentally, theoretically, or by direc
numerical simulation! about highly nontrivial statistics o
fine-scale turbulence. This includes, for instance, the in
1063-651X/2003/68~4!/046308~26!/$20.00 68 0463
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mittent behavior of the velocity structure functions~which
are simultaneous, two-pointnth-order correlation function of
velocity differences!, the fusion rules~which govern the
asymptotic behavior of many-point velocity correlation fun
tions!, and so on. A possible reason for such a lucky succ
is that the above mentioned~and some other! characteristics
of the turbulent statistics are robust and depend only on s
very general physical requirements, such as respect for
actual conservation laws, scale invariance, the type of n
linearity in the NSE, and the locality of interaction. All thes
features are accounted for in the shell models. There
been a set of important attempts to construct shell mod
with a real space structure@9–11#.

Unfortunately, shell models in their traditional formula
tions describe only space homogeneous turbulence, lea
aside wall-bounded turbulence, which plays a much m
important role in practical applications.

Turbulent flows at high Reynolds numbersRe@1, contain
such a wide range of excited lengths and time scales
direct numerical simulation~DNS! of the NSE is impossible
for the foreseeable future. Consequently, practical engin
ing calculations are based on some model simplifications
the NSE, with Reynolds stress models being the most po
lar approach; see, e.g., the book@12#; the review@13#, and
references therein. The idea of Reynolds~see, e.g., Ref.@14#!
was to divide the velocity field into a mean flow partV~r !
and a turbulent fluctuating partu(r ,t) with zero mean and to
approximate in some way the hierarchy of equations for v
ous correlation functions~correlators!. The equation forV~r !
contains the so-called Reynolds stress term, a second-o
correlator ofu(r ,t). The right hand side~RHS! of the equa-
tion for the Reynolds stress contains five different terms:
rates of production, dissipation, turbulent transport, and v
cous diffusion, and the velocity pressure gradient te
These are one-point, second- and third-order correlator
velocity and velocity gradients and the pressure-gradient
relator. The equation for only one such object, the dissipa
©2003 The American Physical Society08-1
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rate, already contains eight correlators up to fourth orde
the velocity, which are usually modeled by various closu
procedures in terms of lower order objects. The simpl
old-fashioned Millionshchikov closure~@14#, p. 241! is often
invoked. It uses the nonrealistic assumption of Gaussian
tistics of turbulence. To improve the situation one can us
set of phenomenological constants, which can be found
comparison of the results of model calculations with the
sults of DNS or experiments on benchmark flows.

There have been attempts to use more advanced field
oretical approaches developed in the theory of homogene
turbulence, e.g., the Yakhot-Orszag version of the renorm
ization group~RNG! approach@15,16#. Instead of going into
detailed criticism of this approach, already done in Ref.@17#,
we just make two general remarks about it, which are a
relevant to most attempts at straightforward transfer of
field theoretical methods of fully developed, fine-scale, h
mogeneous turbulence to the case of wall-bounded flo
First, in most cases~RNG, diagrammatic perturbation ap
proach, etc.! the turbulence is assumed to be excited by so
artificial external force with Gaussian statistics. This is
reasonable simplification of the real picture, if one deals w
turbulent scales that are deep enough in the inertial inter
However, this is definitely not a realistic assumption for lar
scales, which are important in the energy and mechan
momentum balance in wall-bounded turbulence. Second
most cases, the field theoretical approaches to homogen
turbulence are formulated in thek representation or explic
itly assuming space homogeneity. In this way one gets
required closure relationships, say between the effective
bulent viscositynT , the density of the kinetic energyE, and
the rate of energy dissipation~used in the popularK̄- ē ver-
sion of the Reynolds stress model!. However, at least two o
these objects (nT and E! are not locally defined; they ar
dominated by the largest eddies in the system, usually
scales close to the distance to the wall. Therefore one ha
be extremely careful in applying the resulting relations
wall-bounded flows in which the characteristic length of
homogeneity is exactly the distance to the wall. A price
pay for this simplification is that the phenomenological co
stants may depend on the flow geometry or even on
position in the flow.

By introducing enough adjustable parameters~sometimes
geometry dependent!, one can reach the engineering goal
modeling by computer some mean and turbulent charact
tics of particular flows of practical importance. Howeve
important aspects of the basic physics of wall-bounded
bulence remain unclear, being masked by numerous de
or even incorrectly reproduced.

The main goal of this paper is to suggest a physica
transparent and analytically analyzable model of wa
bounded flows. The model describes the interplay of t
main physical phenomena in wall flows: the energy casc
toward small scales~as in developed homogeneous turb
lence! and the cascade of the mechanical momentum tow
the wall in the physical space. Our model is a generaliza
of the shell model of homogeneous turbulence to the cas
inhomogeneous turbulence and accounts for a nonunif
profile of the mean velocity. Simplifying assumptions a
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made from the very beginning, at the level of the basic,
namical equations of motion. These equations involve o
two parameters, responsible for the energy and mechan
momentum fluxes. These parameters can be evaluate
DNS of the NSE, but currently they are chosen to reprod
the von Kármán constantkK and constantB in the universal
logarithmic profile of the mean velocity near a flat plane.

Our model is oriented toward the classical examples
wall turbulence, like channel and pipe flows and planar a
circular Couette flows. The physical description of the mo
and its equations of motion are presented in the follow
subsection.

B. Brief review of multizone shell model

For dealing with inhomogeneous wall turbulence we su
gest in this paper apiecewise homogeneity approximationin
which the cross-sectional area of the flow,S, is subdivided
into a set ofj zones. The area of the first zone, responsib
for the core of the flow,S1'S/2, and the areas of the nextj
zones,Sj , decrease toward the wall asSj}22 j . In eachj
zone, the statistics of turbulence is assumed to be space
mogeneous and is described by its own shell model

dun j~ t !

dt
52nnkn

2un j1Nn j1Dn jwn ~1.1!

for the shell velocitiesun j(t), which are responsible for tur
bulent fluctuations of the~dimensionless! scalesn;22n, re-
ferred to below as~nj! eddies. Hereafter,Dn j is the Kro-
necker symbol~1 for n5 j and 0 otherwise!. Equation~1.1!
accounts for the viscous damping term with some effect
viscositynn;n0 , wheren0 is the kinematic viscosity of the
fluid. The effective shell wave vectorkn}1/sn . The nonlin-
ear term in Eq.~1.1!, Nn j , is given by Eq.~2.16! and de-
scribes the usual triad interaction of nearest shells, insid
given j zone, Eq.~2.12!, and some interzone interaction ter
of similar type. The production termwn is responsible for the
energy flux from the mean flow to the turbulent subsyst
and is given below by Eq.~3.23!.

Our goal is to describe the mean velocity profi
^V(r,t)&, in which r is the two-dimensional radius vector i
the cross section of the flow,r' x̂, wherex̂ is the streamwise
direction. To this end we introduce additional variablesVj (t)
with a prescribed space dependenceFj (r), uniquely deter-
mined by the flow geometry. The variablesVj (t) can be
understood as complex amplitudes of the near-wall cohe
structures of the dimensionless scalesj , which is the same as
the scale of the~nj! eddies: sj5hn for n5 j . The functions
Fj (r) are chosen such thatFj 11(r).Fj (2r) and they form
an orthonormal~but incomplete! basis. We call it thePM
basis, because~in spite of its incompleteness! it is chosen
such as to representexactly the densities of the mechanica
linear and angular momentaP andM in terms ofVj (t) only:

P5(
j

sj Re@Vj~ t !#, M5(
j

sjRj Im@Vj~ t !#.

~1.2!
8-2
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HereRj is the characteristic distance of thej zone from the
centerline of the flow. ThePM basis also allows one to re
construct the spatial dependence of the mean flow~and its
time dependent fluctuations! with finite ~but very good! ac-
curacy,

V~r,t !'VPM~r,gt![ReF(
j

Vj~ t !Fj~r!G . ~1.3!

For thePM velocities Vj (t) we suggest a simplemomentum
equation

dVj~ t !

dt
52n jk j

2Vj1¹p1Wj , ~1.4!

which includes the viscous termn jk j
2Vj , pressure gradien

¹p.0, and Reynolds stress termWj , which accounts for the
exchange of the mechanical momentum between nea
zones in the flow and is given by Eq.~3.15d!.

It is crucially important that the suggestedmulti zone shell
model, Eqs.~1.1! and~1.4!, preserves~in the unforced, invis-
cid limit! all the integrals of motion relevant in the problem
the energyE and mechanical momentaP andM; and that it
respects Galilean and ‘‘asymptotic’’ scale invariance toget
with the NSE type of nonlinearity. The model in a relative
simple and analytically transparent manner describes the
sic physical phenomena in wall-bounded flows for a hu
interval of Reynolds numbers. The model allows one
study the interplay of temporal intermittency in the casca
and spatial momentum transfer, which may be important,
example, in the problem of drag reduction in wall-bound
flows.

C. The plan of the paper

Section II is devoted to the statistical description of t
turbulent part of the multizone shell~MZS! model Eq.~1.1!.
First, in Sec. II A we describe a way from the NSE to
standard shell model of homogeneous turbulence that all
generalization for space inhomogeneous turbulence. Nex
Sec. II B we formulate a piecewise homogeneity approxim
tion: the cross-sectional area of the flow,S, is subdivided into
a set ofj zones, in each of which the statistics of turbulen
is assumed to be space homogeneous. This allows us to
the standard shell model for everyj zone and to describe th
turbulence in the whole flow by the set of shell velociti
un j(t) for turbulent fluctuations of the scale proportional
1/2n.

In Sec. III we derive the dynamical equation of motion f
the so-calledPM velocitiesVj , which allows one to recon
struct with good accuracy the mean velocity profileV~r! in
the cross section of the flow. In particular, in Sec. III B w
introduce thePM basis for a wide class of wall-bounde
flows, which connectsV~r! andVj . In Sec. III C we derive
Eq. ~1.4! for Vj and for all terms involved in Eq.~1.4!.

We start Sec. IV with a summary of the resulting MZ
equations, presenting them, in Sec. IV A, in dimensionl
form ~4.3!, convenient for further analysis. In particular, w
discuss the conservation laws~Sec. IV B! and the symmetries
04630
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~Secs. IV C and IV D! of the MZS model. In Sec. IV D we
derive a version of the MZS model for the turbulent boun
ary layer near a flat plane, Eqs.~4.19!.

Section V presents a detailed analytical study of the M
equations in a set of approximations realistic at various v
ues of Re. In Sec. V A we show that the MZS model de
scribes the stable laminar velocity profile for small Re and
instability at some threshold value ofRe5Recr . Next, in
Sec. V B we study the MZS model in the approximation
near-wall eddies, neglecting the turbulent energy casc
This effect is accounted for in Sec. V C in the approximati
of turbulent viscosity. Section V D is devoted to a numeric
analysis of the MZS model.

In Sec. VI, we summarize our findings and suggest a p
sible generalization of the model for the description of tu
bulent flows laden with long-chain polymeric additives~in
connection with the problem of drag reduction! or with
heavy microparticles, etc.

D. Notation and definitions

For the reader’s convenience we collect in this subsec
some frequently used notation and important definitions.

x̂ and r are the streamwise direction and the tw
dimensional radius vector in the cross section of a flo
r' x̂. In a channelr5(y,z), with y as the wall normal andz
as the spanwise directions.

S' , P' , andL are the cross-sectional area, the perime
and the characteristic length of a cross section:

S'5E dr, L[S' /P' . ~1.5!

In a channel of width 2H, L5H; in a pipe of radiusR, L
5R/2.

¹p is the external pressure gradient, which is a posit
constant:

¹p[2
dp~x!

dx
.0. ~1.6!

t and Ut are the characteristic time and the velocity in t
flow:

t[AL/¹p, Ut[AL¹p. ~1.7!

The wall shear stress isUt
2.

n0 and Re are the kinematic viscosity and the frictio
Reynolds number

Re[UtL/n0 . ~1.8!

f 8 and f 9 are the real and imaginary parts of some co
plex objectf ~constant, variable, function, etc.!:

f 8[Re@ f #, f 9[Im@ f #. ~1.9!

n, j, andp are dummy indices~natural numbers!, reserved
for the scale~or shell!, zone, and position indices; some o
jects can be related to both the shells and zones. They
used with bothn and j indices.
8-3
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sj and s j are the fraction of the cross-sectional area
cupied by thej zone, and the fraction of the cross-section
area occupied by all zones toward the wall, starting from
zonej:

sj[
Sj

S'

, s j[(
i 5 j

`

si , s15(
j 51

`

sj51. ~1.10!

L j ([sjL) is the width of thej zone andLn the charac-
teristic scale in then shell.

kn @[1/(2Ln)# is the wave number in then shell; k j is
the wave number of thej zone.

E, P, andM are the densities of the energy and of t
mechanical linear and angular momenta (x̂ projections!.

«6, p6, andm6 are the total rates of pumping~with 1!
and dissipation~with 2! of the conserved quantitiesE, P,
andM.

« j
6 , pj

6 , andmj
6 are the rates of pumping~with 1! and

dissipation~with 2! in the j zone~of E, P, andM!.
« j , pj , andmj are the fluxes ofE, P, andM from thej to

the (j 11) zone.
The scalar product of complex vector functionsA~r! and

B~r! is

~A,B![E A* ~r!•B~r!
dr

S'

. ~1.11!

fm
1(r) andfm

2(r) are the even and odd eigenfunctions
the two-dimensional Laplace operator in the cross sectio
the flow with no-slip boundary conditions,fm

6(2r)5
6f6(r).

Fj (r)5Fj8(r)1 i Fj9(r) are PM basis functions, Eq
~A2!.

VPM(r) andVj are thePM velocity in the coordinate and
j representations, related by Eq.~3.3!.

un j is the velocity of turbulent fluctuation of the sca
proportional to 22n in the j zone@~nj! eddies#; uj[uj j .

II. STATISTICAL MULTIZONE SHELL MODEL
FOR TURBULENT FLUCTUATIONS

A. From the NSE to shell models of homogeneous turbulence

In this subsection we present a rederivation of the st
dard shell model of space homogeneous turbulence in a
that allows us to generalize it in Sec. II B for the case
space inhomogeneity.

1. ‘‘Cell basis,’’ wavelets, and ‘‘„np… eddies’’

Consider for simplicity an incompressible turbulent velo
ity u(r ,t) in a periodic box of sizeL3L3L. Instead of the
r or k representation, we introduce here a ‘‘cell basis’’
Cnp(r ), which is quite similar to wavelet bases~for an easy-
to-read, introductory text about the theory of wavelets, s
e.g.,@18#!. Similar to the wavelet bases, the cell bases refl
both spatial scales of turbulent structures~as in thek repre-
sentation! and their position in the physical space~as in ther
representation! but account for the actual boundary cond
04630
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tions of the flow.The cell index(n,p) consists of the scale
index n51,2, . . . ,̀ and the position index p
5(px ,py ,pz).

The scale index n51,2, . . . ,̀ defines the characteristi
width Ln ~in all directions! of the functionCnp(r ), which
some (np) cell of sizeLn5L/2n ‘‘occupies’’ in space.

The position indexp5(px ,py ,pz) defines the position
Rnp of the (np) cell:

Rnp[pLn , p5~px ,py ,pz!,

pPCn⇔pa51,2, . . . ,2n, a5x,y,z. ~2.1!

One can imagine that, for any givenn, the set of (np) cells
with pPCn fills a periodic L3 box. The turbulent velocity
field u(r ,t) is given by

u~r ,t !5 (
n51

`

(
pPCn

Re@Unp~ t !Cnp~r !#, ~2.2!

where the amplitude of the cell expansion,Unp(t), is the
velocity difference across the separationLn in the (np) cell.

It is convenient to normalize the cell basis as follows:

E
0

LE
0

LE
0

L

Cnp* ~r !•Cn8p8~r !
dx dy dz

L3 52vnDnn8Dpp8 ,

E
0

LE
0

LE
0

L

Cnp~r !•Cn8p8~r !
dx dy dz

L3 50. ~2.3a!

Herevn5223n is the dimensionless part of the total volum
per one mode in thenth cell.

Equations~2.2! and~2.3! give the Parseval identity for the
density of the turbulent energy in the form

E[E
0

LE
0

LE
0

L uu~r ,t !u2

2

dx dy dz

L3 5 (
n51

`

En~ t !, ~2.4a!

En~ t !5vn (
pPCn

uUnp~ t !u2

2
. ~2.4b!

This equation supports our interpretation ofUnp(t) as the
velocity difference across the separationLn in the (np) cell.
We will refer to these fluctuations as the (np) eddy.

A particular choice of the cell functionsCnp(r ) is not
important for us here. Notice only that for largen the basic
cell functions become scale invariant and may be obtai
by dilatations of one~or a few! n independent function
C`(x). In this limit the cell basis becomes the wavelet o
with C`(x) as the so-calledR wavelet @18#. An explicit
example of a divergence-free three-dimensional vectorR
wavelet function and is given in@6#.

The cell functionsCnp(r ) form a complete orthonorma
basis, and therefore one can derive theexact equation of
motion for Unp(t) by the Galerkin projection of the NSE:
8-4
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dUnp
s ~ t !

dt
52(

p8
Gn,pp8Unp8

s
~ t !

1 (
n8n9

(
p8p9

(
s8s956

Tnn8n9,pp8p9
ss8s9 Un8p8

s8 ~ t !Un9p9
s9 ~ t !,

~2.5!

wheres,s8,s956 are sign indices, and we accept the co
ventionUnp

2 [Unp andUnp
1 [Unp* . The explicit forms of the

damping parametersG and amplitudesT depend on the basis
see, e.g.,@6#.

2. Basic assumptions of the standard shell models

Consider briefly the physical simplifications that allo
one to reduce the NSE to the shell model of homogene
turbulence. Unlike the similar discussion in@6#, we empha-
sized the assumption of space homogeneity and the pos
ity of relaxing this assumption in order to generalize sh
models for the space inhomogeneous case.

The standard shell models of homogeneous turbule
follow from the exact Eq.~2.5! with the following simplify-
ing assumption of a statistical nature:

Unp~ t !⇒un~ t !Anp , ~2.6a!

Anp50, uAnpu251. ~2.6b!

HereAnp are time independent, random amplitudes, and
overbar denotes averaging over yet unknown statistics
Anp , which is generated by the NSE~2.5!. The dynamical
content ofun(t) is the ‘‘typical’’ ~in the statistical sense! time
dependence of all (np) eddies; in particular,̂uunuq& is sup-
posed to have the same scaling exponents as theq-order
velocity structure functions in NSE turbulence; see, e.g.,@5#.

The physical arguments behind Eq.~2.6! may be based on
the fact that in homogeneous turbulence all velocitiesUnp(t)
with different p have the same statistics. Equation~2.6!
therefore neglects only the difference between the ac
time realizations ofnp velocitiesUnp(t) of the same scale
~the same scale indexn!, but occupying different cells~dif-
ferent position indexp!. The ensemble of the time realiza
tions is replaced by the time independent ensemble ofAnp .
With the assumption~2.6!, Eq. ~2.5! yields

dun~ t !

dt
52gnun~ t !1Nn , ~2.7a!

gn5(
p8

Gn,pp8AnpAnp8, ~2.7b!

Nn5 (
n8n9,s8s9

Snn8n9
s8s9 un8

s8~ t !un9
s9~ t !, ~2.7c!

Snn8n9
s8s9 5 (

p8p9
Tnn8n9,pp8p9

s8s9 AnpAn8p8An9p9. ~2.7d!
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The correlation functions ofAnp can be evaluated with som
reasonable statistical assumptions~for instance, with some
closure procedure, like the direct interaction approximati
see, e.g.,@6#!.

Under assumption~2.6!, Eq. ~2.4b! gives the usual equa
tion for the density of the total energy of thenth scale:
En(t)51/2uun(t)u2. Different shell models correspond t
various further simplifications of the nonlinear term~2.7c!.
For example, in the Sabra shell model@3#,

Nn5 i @akn11un11* un121bknun21* un112ckn21un22un21#,

~2.8a!

kn}2n, a1b1c50. ~2.8b!

Notice that the scale indexn in Eqs.~2.7! and~2.8! for shell
models becomes theshell index.

B. Piecewise homogeneity approximation and multizone shell
model for turbulent fluctuations

The turbulent fluctuations in wall-bounded flows are n
space homogeneous due to the spatial dependence o
mean velocity profile, which, in its turn, is also affected b
the turbulent fluctuations. Due to the inhomogeneity of t
bulence, the shell model approach discussed in Sec. II A
to be revised, which is the subject of this subsection.
concreteness we discuss the planar geometry of channel
of width 2H in the cross-stream directiony ~see Fig. 1!. In
further analysis we consider only the lower half of the cha
nel, 0,y,H, having in mind that the flow in the secon
half of the channel,H,y,2H, is statistically identical to
that in the first one.

Clearly, the core of the flow~say, forH/2,y,H) may be
approximately viewed as homogeneous. Let us call this
gion the 1 zone. The next regionH/4,y,H/2, in which the
mean velocity profileV(y) begins to decrease towards th
wall, we call the 2 zone. Notice that the width of the 2 zon
H25H/4, is one-half of the 1-zone width,H15H/2. There-

FIG. 1. Geometry of the channel and the plane Couette fl
between two parallel planes separated by 2H in the cross-stream
direction y. In the simple channel flow the pressure gradient

applied in the ‘‘streamwise’’ directionx and the mean velocityV̄(y)
is oriented also alongx. In the plane Couette flow the lower wa
(y50) is moving inz ~span-wise! direction with some velocityV0 ,
while the upper wall (y52H) is moving in the opposite direction

In this caseV̄(y) hasz-projection. For both flows~and their hybrid-
ization! the three-dimensional velocity fluctuations are spa
homogeneous in thex2z plane.
8-5
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fore, with approximately the same accuracy we can cons
the statistics of turbulence in the 2 zone as homogeneous
different from that in the 1 zone.

Similarly, one expects that the mean velocity differen
across each succeedingj zone of widthH j5H/2j will be
more or less the same. This is the motivation to define thj
zone in a scale invariant manner, as 22 jH,y,22( j 21)H
and to approximate the turbulence inside each such zon
homogeneous.

The approximation of the piecewise homogeneity allo
one to use the shell-model reduction, Eq.~2.6!, inside eachj
zone, similarly to that in the whole space for homogene
turbulence:

Unp~ t !⇒un j~ t !Anpj
, 1< j <n, ~2.9a!

Anp50, uAnpu251,

un j5unn , j .n. ~2.9b!

Herepj belong to thej zone, in the sense that the (npj ) cells
are inside thej zone. We introduced in Eq.~2.9a! the velocity
of ~nj! eddies, in thenth shell in thej zone. Equation~2.9b!
reflects the fact that the near-wall~nj! eddies with zone index
j .n belong simultaneously to thej zone withj 5n ~see Fig.
2!. Therefore in our model allun j(t) with j .n are just
unn(t).

With Eqs.~2.9! one gets from Eqs.~2.4b!

En~ t !5(
j 51

`
H j

H
En j~ t !, En j~ t !5

uun j~ t !u2

2
, ~2.10!

whereEn j is the energy density of thenth shell in thej zone
of width H j5H/2j .

Using Eqs.~2.9! and ~2.5!, one gets the equation of mo
tion of the multizone shell model for turbulent fluctuation

FIG. 2. Zones, shells, and triad interactions in the multizo
shell model for the channel geometry. Regions of localization
(np) eddies are shown schematically as ellipses with correspon
numbers inside. The near-wall eddies haven5 j . They also occupy
all j zones toward the wall, withj .n.
04630
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dun j~ t !

dt
52gnun j~ t !1Nn j1Dn jwj , ~2.11!

in which we have added by hand the production termwj ,
describing the energy pumping to the turbulent system. T
term will be clarified in the following section by Eq.~3.23!.

The nonlinear termNn j in Eq. ~2.11! describes the tota
energy balance for thenth shell in thej zone. There are two
distinct geometries:j ,n and j >n. In the latter case it is
enough to describe the energy balance forj 5n, since all
un j5unn for j .n.

All eddies with j ,n are fully placed in the same zon
~e.g., the eddies of shellsn52, 3, and 4, which belong to the
first zone; see Fig. 2!. Therefore in this case we can use f
Nn j(t) a standard shell model expression forNn , in which
un j⇒un . In this paper we adopt the Sabra version of theNn j
term, generalizing Eq.~2.8!:

Nn j~ t !5Nn j~ t ! for j ,n, ~2.12a!

Nn j5 i @akn11un11,j* un12,j1bknun21,j* un11,j

2ckn21un22,jun21,j #. ~2.12b!

The energy balance of the near-wall eddies (n5 j ) is quite
different. As one sees in Fig. 2~on the example of the edd
in the first shell!, the near-wall eddies participate in tria
interactions of three types.Triad 1 involves one near-wall
eddy and two bulk eddies@the (u11-u21-u31) triad of the first
zone in the above example#. For this interaction we will use
Eq. ~2.8! but with different parameters:a1 , b1 , and c1 .
Triad 2 involves two near-wall eddies and one bulk eddy@the
(u12-u22-u32) triad of the second zone in Fig. 2#. Here we
will use Eq.~2.8! with the parametersa2 , b2 , andc2 . Triad
3 involves three near-wall eddies@the (u13-u23-u33) triad of
the third zone in the above example#. Here we will again use
Eq. ~2.8! with the parametersa3 , b3 , andc3 .

The relationships between the four set of interaction
rameters@~a,b,c! and (ap ,bp ,cp), p51,2,3] may be found
from ~i! the requirement of the conservation of energy a
~ii ! the ‘‘correspondence principle:’’ For the space homog
neous case (un j is independent of the zone indexj! the mul-
tizone model must coincide with the usual shell model
homogeneous turbulence~in our case, with the Sabra model!.

The above two requirements give

a15a/2, a25a35a/4,

b15b, b25b35b/2,

c5c15c25c3 . ~2.13!

These equations may be interpreted as follows. In the
ads 1 only one-half of the largest eddy belongs to the sa
zone as two smaller ones. This givesa15a/2. Two smaller
eddies in triad 1 fully belong to their zone. This correspon
to b15b andc15c. In the triads 2 only one-quarter of th
largest eddy belongs to the same zone as two smaller o
Thereforea25a/4. In this triad only one-half of the middle
eddy belongs to the same zone as the smallest one.
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corresponds tob25b/2. The smallest eddy in the triad be
longs fully to its own zone, and we takec25c. In triads 3
only one-quarter of the largest eddy, one-half of the mid
one, and the full smallest eddy belong to the same se
zones~zones 3,4, etc., in our example!. This corresponds to
the relationshipsa35a/4, b35b/2, andc35c.

The total contribution of the three types of triad intera
tion to the nonlinearity of the near-wall eddies can be su
marized as follows:

Nnn5
1

4
@2Nn,n1Nn,n111Nn,n12#. ~2.14!

One can join the two equations~2.12! and ~2.14! and write

Nn j5Nn j1Dn jF1

4
~Nn,n112Nnn!1

1

4
~Nn,n122Nnn!G .

~2.15!

Obviously, in the homogeneous case the second term in
RHS of Eq.~2.15! vanishes and one recovers the usual sh
model for homogeneous turbulence withNn j⇒Nn .

Notice that the explicit form of this equation reflects t
fact that we have accounted only for the triad interactio
involving the nearest shells (n21, n, and n11) and the
particular form of the channel subdivision in the zonesH j
522 jH. This subdivision of the cross-sectional area
zones is reasonable for the scale invariant case of a turbu
boundary layer near a flat plane. The physically motiva
subdivision in particular flow geometries will be discussed
the following section. In the general case Eq.~2.14! is
changed as follows:

Nn j5Nn j1Dn j (
i 5n11

`
si

s j
~Nni2Nnn!,

s j[(
i 5 j

`

si , ~2.16!

with an arbitrary dependence of the~dimensionless! j zone
areassj on j and an arbitrary form of the nonlinear termNn j .
The fact that under the sum one has the difference (Nn j
2Nnn) guarantees the correspondence principle, while
weightssi /s j follow from the requirement of conservatio
of the total energy, which in the case of an arbitrary zo
division is given by a natural generalization of Eq.~2.10!
with H j /H replaced bysj :

En~ t !5(
j 51

`

sjEn j~ t !, En j~ t !5
uun j~ t !u2

2
. ~2.17!

III. DYNAMICAL MULTISCALE MODEL
FOR THE PM VELOCITY

A. Mechanical momentaP and M and statistics
versus dynamics dilemma

Unbounded turbulence may be described in a refere
system with a zero mean velocity. In that system the to
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linear momentum vanishes:P50. Due to Galilean invari-
ance the space homogeneous velocity does not interact
the turbulent fluctuations. Therefore one can consider tur
lence in any other reference system withPÞ0 with the same
result for the statistics of turbulence. Hence, the mechan
momentum is not a relevant integral of motion for u
bounded turbulence. This is not the case for wall-bound
turbulence, in which the Galilean invariance is broken by
presence of the walls. The conservation laws for the to
linear momentumP ~as well as for the total angular momen
tum M ! give an important constraint on the expected beh
ior of the system. For example, in channel and pipe flow
the total input of linear momentum due to the pressure g
dient, acting in the whole cross-sectional area of the flo
must be equal to the dissipation of momentum at the w
due to viscous friction. Clearly, an analytical description
wall-bounded turbulence must respect the conservation oP
andM ~in the unforced, inviscid limit!.

Consider the mean velocity fieldV~r! in simple flows
with translational symmetry in the streamwise directionx̂iP,
in which alsoM i x̂. Herer is the radius vector in the cros
section of the flow,r' x̂. Examples of such flows are chan
nel and pipe flows, planar Couette flow~Fig. 1!, circular
Couette flow, etc. Instead ofP andM , it is more convenient
to deal with their volume densitiesP and M, defined as
follows:

P5Px5~ x̂,V!, ~3.1a!

M5Mx5~R,V!, R[ x̂3r ~3.1b!

where~A,B! is the scalar product~1.11!.
Our idea is to divide the full velocity fieldV~r! into two

parts, denoted asVPM(r) andVT(r), such that the turbulen
part VT(r) does not contribute toP andM:

~ x̂,VT!50, ~R,VT!50, ~3.2!

and to take special care only withVPM(r), contributing toP
andM. This division may be done in many ways; our pa
ticular choice will be clarified below by Eq.~3.3!.

The description ofVPM(r,t) may be statistical or dy-
namical. The statistical description is the straightforwa
cell-expansion approach to shell models, based on the N
for VPM(r,t) in the cell representation, similar to Eq.~2.5!.
To continue, one has to find some reasonable statistical
plifications, similar to Eq.~2.9!. However, sincePÞ0 and/or
MÞ0, now also^VPM(r,t)&Þ0 and thereforeAnp cannot
be approximated as zero. This makes it hardly possible
remain on the level of a statistical description and one ha
deal with a detailed, dynamical description of thePM veloc-
ity VPM(r,t) in terms of the NSE. This is the subject of th
following subsections.
8-7
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B. PM basis, properties, and interpretation

1. Construction of the basis

In the framework of the MZS model, we approximate t
mean velocity profile by thePM velocity VPM(r,t), which
can be projected on theincomplete complex PM basis
Fj (r):

VPM~r,t ![ReF (
j 51

`

Vj~ t !Fj~r!G , ~3.3!

where the expansion coefficientsVj (t) can be understood a
PM velocities in the zone representation.

In order to reflect the essential physics of the problem
the PM representation, we require the following gene
properties of the basis functions.

~1! The basis functionsFj (y) are asymptotically~for j
→`) scale invariant:

Fj 11~r!'Fj~lr!, ~3.4a!

with a scaling parameterl.1. In this paper we adopt a
standard valuel52.

~2! The basis functionsFj (y) form an orthogonal set an
thus represent independent contributions to the kinetic
ergy of the flow:

~Fj ,Fj 8!52sjD j j 8 , ~3.4b!

~Fj* ,Fj 8!50. ~3.4c!

Here sj are dimensionlesszone areasthat depend on the
explicit form of the basis.

~3! In spite of its incompleteness, thePM basisexactly
represents the relevant linear integrals of motion, nam
linear P and angularM mechanical momenta, defined b
Eqs.~3.1!.

~4! In addition to these three crucial properties, we a
require that different basic functionsFj (r) belong to differ-
ent subspaces of the Laplace operator. In this case the
cous term in the zone representation will have the simp
possible diagonal form.

In Appendix A we show that the above requirements
sufficient to determine the uniquePM basis for any given
flow geometry, Eq.~A2!, and analyze the properties of suc
bases in detail. Here we list expressions for the conser
quantities of the NS equation in thePM basis that are impor
tant for the following discussion. The densities of the line
P and angularM mechanical momenta of the flow are give
exactlyas

P5(
j

sjVj8~ t !, ~3.5a!

M5(
j

sj@RjVj9~ t !#. ~3.5b!

Here Rj is defined by Eq.~A7!, and, with a high accuracy
may be approximated as the distance from the center of
flow to the wall, i.e.,Rj'H for the channel.
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The energy density associated with thePM velocity is

EPM5(
j

sj

uVj u2

2
. ~3.5c!

2. PM basis for the channel and pipe flows

The particular form of thePM functions is geometry de
pendent. To get a feeling of the appearance of these fu
tions, we discuss here two important cases, channel and
flows, found in Appendix A, Eqs.~A2!, ~A13!, and ~A14!.
These two examples will serve us in the rest of the pap
Some properties of these specific bases are more gen
however, and will be used in the derivation and analysis
the momentum equation forVj (t).

In Fig. 3 we plotF j ,x8 (y) andF j ,z9 (y) for the channel as it
follows from Eq. ~A2! with Eq. ~A13!. The functions
F j ,x8 (y) are symmetric with respect to the centerline of t
channely5H, whereasF j ,z9 (y) are antisymmetric. For large
j, F j ,x8 (y) andF j ,z9 (y) coincide in the lower half of the chan
nel y,H and have an opposite sign fory.H. As is clear
from ~c! and~d! in the near-wall (y!H) regionF j ,x8 (y) and
F j ,z9 (y) already almost coincide forj 55.

For channel flow one can find from Eqs.~A2! and ~A13!
an explicit asymptotic expression forF j ,x8 (y) andF j ,z9 (y) in
the limit j→` ~actually, j .4). For y,H,

F j ,x8 ~y!.F j ,z9 ~y!.Fun~2 jp2y/2H !, ~3.6a!

Fun~j![
2

p FSiS 2j

p D2SiS j

p D G , ~3.6b!

where Si(x) is the sine integral function.
It is expected that the asymptotic form of the basic fun

tionsFun is the same for any flow geometry, if one express
them as functions of the distance from the wall. For examp
in the pipe one obtains Eq.~3.6a!, wherey is the distance
from the wall,y5R2r, andH is the radius of the pipe,H
5R. In Fig. 4 we show the collapse of the rescaled functio
F j (2Hj/p22 j ) for j 55, . . . ,8 with the universal function
Fun(j) for the channel~a! and pipe@~b!, H5R] flows.

3. Geometry of the j zones in the channel and pipe flows

a. Characteristic length of a flow.The cross section o
the flow can be characterized by two global parameters,
cross-sectioned areaS' and the length of its perimeterP' .
One can organize from these two objects many combinat
with the dimensions of length,L(b)[P'(S' /P'

2 )b, with
arbitraryb. For discussion of turbulent flows under an exte
nal pressure gradient, the particular choiceb51,

L[L~1!5S' /P' , ~3.7!

is physically important. The reason is that the total exter
accelerating force, applied on a unit length of the fluid~in the
streamwise direction!, is proportional toS' :

Fac5¹pS' ,
8-8
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FIG. 3. First functionsFj (jH) describing the mean flow with nonzero mechanical momenta in a channel of width 2H. In the whole
channel 0,j,2. ~a! and~b! The PM functionsF j ,x8 (jH) ~a! andF j ,z9 (jH) ~b! with j 51,2,3,4 for the whole channel.~c! and~d! The PM
functions with j 55,6,7,8 in the near-wall region.~c! F j ,x8 (jH). ~d! F j ,z9 (jH).
m

while the total friction force is proportional toP' ~under the
simplifying assumption of homogeneity along the peri
eter!:

F fric5n0P'

dVx~y!

dy U
y50

.

The stationarity conditionFac5F fric allows one to relate
@dVx(y)/dy#y50 to the characteristic lengthL defined by Eq.
~3.7!:
04630
-
dVx~y!

dy U
y50

5
¹p

n0L
.

In terms of the friction velocityUt , Eq. ~1.7!, and the fric-
tion Reynolds numberRe, Eq. ~1.8!, this gives the famous
constraint for wall-bounded flows

dVx~y!

dy U
y50

5Re
Ut

L
. ~3.8!
FIG. 4. Asymptotic universality of thePM basis functions.~a! Collapse of the rescaled real part of the basis functionsF j (2Hj/p22 j ) for
n55, . . . ,8 with theuniversal asymptotic functionFun(j) for channel flow. The lines~from right to left! correspond to those in Fig. 3~c!.
The leftmost solid line denotesFun(j). ~b! The same for pipe flow,H5R.
8-9



sti

r

ar

re

ip

o-

-

n

e of

ex

.

or

e

7
8
9
4
7
4
2
2

5
5

L’VOV, POMYALOV, AND TIBERKEVICH PHYSICAL REVIEW E 68, 046308 ~2003!
In all the mentioned global relationships the characteri
lengthL plays an important role.

Notice that for the channel of width 2H the lengthL is the
distance from the centerline to a wall,L5H. For the pipe of
radiusR the lengthL5R/2, which is twice smaller than the
distance from the center to the wall.

b. Zones in the channel and pipe.In Table I we present
parameterssj for the channel and pipe geometries, which a
given by Eqs.~A4!, ~A13b!, and~A14c!.

Using sj and L we introduce thecharacteristic width of
the j zone:

L j[sjL. ~3.9!

The idea behind this definition is that for the narrow ne
wall zonesL j is exactly their geometrical widthD j , i.e., the
distance between thej zone boundaries.

Assuming thatD j is much smaller than the local curvatu
of the boundary, we evaluate the area of a very narrowj zone
as Sj5D j P' . On the other hand, this area issjS' . There-
fore,

D j5sjS' /P'5sjL5L j for j @1.

Obviously, for planar geometry,D j5L j for any j. To find the
value of j at which the zones become flat, consider the p
geometry withD j5r j2r j 21 , wherer j is the radius of the
circle occupied by the firstj zones:

r j5RF(
i 51

j

si G1/2

~pipe!. ~3.10!

Table II comparesD j /R given by this equation withL j /R

TABLE I. Parameters of thePM basis for the planar and pip
geometries.

j

Planar Pipe

sj sj2
j Rj /H n j /n0 sj sj2

j Rj /R n j /n0

1 0.811 1.62 0.50 6.48 0.692 1.38 0.51 2.7
2 0.122 0.49 0.77 1.96 0.185 0.74 1.03 1.4
3 0.038 0.30 0.90 1.22 0.068 0.54 1.00 1.0
4 0.015 0.25 0.95 0.99 0.029 0.47 1.00 0.9
5 0.007 0.22 0.98 0.89 0.014 0.44 1.00 0.8
6 0.003 0.21 0.99 0.85 0.007 0.42 1.00 0.8
7 0.002 0.21 0.99 0.83 0.003 0.41 1.00 0.8
8 0.001 0.21 1.00 0.82 0.002 0.41 1.00 0.8
` 2/p2 1 8/p2 4/p2 1 8/p2

TABLE II. Geometrical and characteristic widthsD j andL j of j
zone in pipe geometry.

j 1 2 3 4 5 6

D j /R 0.83 0.105 0.0356 0.0148 0.0071 0.003
L j /R 0.35 0.093 0.0340 0.0145 0.0070 0.003
04630
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5sj/2. Clearly, for j .3 these two parameters practically c
incide.

4. Interpretation of the PM velocities

The PM expansions of the linear profiles@see Eq.~A9!#,
gives a simple interpretation of the velocitiesVj8(t) and
Vj9(t) as thex̂ and ê projections ofVPM(r,t) at some posi-
tion within the j zone,r j :

Vj8~ t !⇔Vx~r j ,t !, Vx~r,t ![ x̂•VPM~r,t !, ~3.11a!

Vj9~ t !⇔Ve~r j ,t !, Ve~r,t ![ê•VPM~r,t !, ~3.11b!

ê[ x̂3r/r. ~3.11c!

This point will be illustrated below in Fig. 14 by direct com
parison ofVj andV(r) in appropriate coordinates.

C. Simple momentum equation forVj

Consider the NSE forVPM(r,t) in the form

]VPM~r,t !

]t
52n0DVPM1¹px̂2~VPM•“ !VPM2~u•“ !u.

~3.12!

Heren0 is the kinematic viscosity, and¹p52dp/dx.0 is
the pressure gradient in the streamwise directionx̂. The non-
linear term (VPM•“)VPM describes the self-nonlinearity i
the PM subsystem and the last term(u•“)u is responsible
for the effect of the Reynolds stress on thePM velocity. Here
the overbar represents ensemble averaging in the sens
Eq. ~2.9!. The nonlinear cross term proportional toVu ~which
has zero mean! is neglected.

The goal is to get the equation of motion for the compl
PM velocitiesVj (t):

dVj

dt
5~damping! j1~pressure! j1~self-interaction! j

1~Reynolds stress! j , ~3.13!

by projecting the NSE~3.12! on thePM basis, using Eqs
~A8! and ~A12! in the form

Vj~ t !52~Fj ,VPM!/~Fj ,Fj !. ~3.14!

Later in this section we derive the following equations f
the terms in the RHS of Eq.~3.13!:

~damping! j52G jVj , ~3.15a!

~pressure! j5¹p, ~3.15b!

~self-interaction! j50, ~3.15c!

~Reynolds stress! j5Wj , ~3.15d!

Wj5dk j~uj 21
2 2uj

2!.
8-10
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HereG j is given by Eq.~3.18! and the dimensionless param
eterd characterize the strength of the interactions.

Collecting Eqs.~3.13!, and ~3.15!, one finally gets the
resulting momentum equation:

dVj~ t !

dt
52n jk j

2Vn1¹p1Wj , ~3.16!

wheren j is the effective viscosity, given for the channel a
pipe flows in Table I, andk j is given by Eq.~3.19!. This
equation together with Eq.~2.11! will be analytically and
numerically analyzed in the following Secs. IV and V.

Readers not interested in the details of the derivation
Eqs. ~3.15! can skip the rest of this section and proceed
rectly to Sec. IV.

1. The damping term

Projecting the NSE~3.12! on the real and imaginary part
of the PM basis Eq.~A2!, and accounting only for the vis
cous term proportional ton0 , one gets

dVj8

dt
52G j8Vj8 ,

dVj9

dt
52G j9Vj8 ,

with, generally speaking, differentG j8 andG j9 :

G j852n0

~Fj8 ,DFj8!

~Fj8 ,Fj8!
, G j952n0

~Fj9 ,DFj9!

~Fj9 ,Fj9!
.

~3.17!

However, in pipe flow they are equal,G j85G j9 , since the
functionsfm

1 andfm
2 are the same; see Eq.~A14!. In chan-

nel flow these functions, Eq.~A13!, are different and hence
G j8ÞG j9 . Nevertheless, for largej, the basis functionsF j8
→F j9 andG j8→G j9 . Therefore it would be a reasonable sim
plification to neglect the~possible! difference betweenG j8
andG j9 and to write Eq.~3.15a! with the same damping term
G j , which is betweenG j8 andG j9 . For example, in channe
flow, Vj8 is responsible for the mean velocity profileVx(y)
and thus ‘‘more important’’ thanVj9 . In that case we will
takeG j5G j8 . In planar Couette flow, the mean velocity pr
file is given byVz(y), which is connected toVj9 , and thus
one had better takeG j5G j9 .

It is customary to represent the damping term via an
fective viscosityn j and an effective wave vectork j , defined
via the characteristic width of thej zoneL j :

G j5n jk j
2, n j;n0 , ~3.18!

k j[
1

2L j
, L j[sjL. ~3.19!

The parametersL andL j were defined and discussed in Se
III B 3 b. The values ofsj andn j for channel and pipe flows
are presented in Table I.

Notice that the damping term in Eq.~3.15a! is diagonal in
j. This is a consequence of our definition of thePM functions
04630
f
-

f-

.

Fj , Eq. ~A2!: the functions withdifferent j originate from
different, and thusorthogonaleigenfunctions of the Laplace
operator.

2. The pressure term

Equations~3.12! and ~3.14! dictate

~pressure! j52¹p~Fj ,x̂!/~Fj ,Fj !.

Substitutingx̂ from Eq. ~A9a! into above expression, on
gets Eq.~3.15b! for any flow geometry. This means that th
pressure gradient uniform inr acts equally on all compo
nentsVj8(t). This remarkable result could also be obtain
from the interpretation ofVj , Sec. III B 4. Indeed, if we
leave in the RHS of Eq.~3.12! only the pressure term, we ge
ther independentVx(r,t)5¹pt, i.e., a homogeneous veloc
ity profile. This means thatVj8(t) is independent ofj.

3. The self-interaction term

In various simple flows the self-interaction term in E
~3.12! is identically equal to zero due to geometrical co
straints. It is so for channel and planar Couette flows, wh

~V•“ !V⇒S Vx

]

]x
1Vz

]

]zDV~y![0.

Here we skipped for brevity the subscriptPM. The same is
true for pipe geometry, where

~V•“ !V⇒S Vx

]

]x
1

Vf

r

]

]f DV~r![0.

In the present paper we consider only flows with zero s
interaction, Eq.~3.15c!.

4. Effect of the Reynolds stress

In the PM representation the Reynolds stress term in E
~3.13! should be a quadratic function of the turbulent velo
ties un j and should scale ask j[1/(2L j )}2 j . This term de-
scribes two physical processes, namely,~i! the exchange of
linear and angular momenta between different zones and~ii !,
together with its counterpartwj in the equation forun j , the
energy exchange betweenVj andun j subsystems.

In the spirit of the shell models of turbulence, we consid
here the form of the Reynolds stress term that accounts
the momentum exchange only between nearestj zones~j and
j 61) and preserves the relevant integrals of motion, the
ergy, and the momenta. Notice that in turbulent channel
pipe flows with ^M&50, the conservation ofP is much
more important that the conservation ofM. Therefore we
can simplify the possible structure of the intersystem int
action termsWj and wj by using forM its simplified ver-
sion, in which allRj are assumed to be the same,Rj→R`

5const, and thus can be omitted:

M̃5(
j

sjVj9⇒~quasiangular momentum!. ~3.20!
8-11
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It is easily justified by noting that forj .3 the j zone contri-
butions toM and M̃ are almost the same~see Table I for
Rj ). In the following we will drop the tilde onM̃, and write
the quasiangular momentum simply asM. Having in mind
the conservation of the ‘‘complex momentum’’

L[P1 iM5(
j

sjVj ,

we suggest the following form of the Reynolds stress te
Wj :

~Reynolds stress! j[Wj5
1

sj
~pj 212pj !, ~3.21!

wherepj is the momentum flux from thej to the (j 11) zone.
Indeed, this form provides the conservation ofL in the in-
viscid, unforced limit:

dL
dt

5(
j

sjWj5(
j

~pj 212pj !50.

For the momentum fluxpj we also select the simples
form, assuming that only the near-wall turbulent eddies
the same scaleuj j [uj ~i.e., un j with n5 j ) give a nonzero
momentum transfer:

pj5
d

2L
uj

2. ~3.22!

Equations~3.21! and ~3.22! give us the simple Eq.~3.15d!
for Wj .

The production termwj , describing the energy pumpin
into the j zone of the turbulent subsystem Eq.~2.11!, is then
uniquely determined by the requirement of conservation
the total energy of the system:

wj5
d

2s jL
~Vj2Vj 11!uj* . ~3.23!

IV. CONSERVATION LAWS AND SYMMETRIES
IN THE MZS MODEL

A. Resulting dimensionless MZS equations

For the convenience of the reader we present here the
set of MZS equations which will be the subject of analytic
and numerical studies. As the first step, we nondimensio
ize the MZS equations, expressing timet and velocities
Vj ,un j in units of t andUt :

t̃[
t

t
, ~4.1a!

Ṽj~ t̃ ![
Vj~t t̃ !

Ut
, ~4.1b!

ũn j~ t̃ ![
un j~t t̃ !

Ut
, ~4.1c!
04630
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¹ p̃51, ~4.1d!

where the timet and velocityUt are constructed from the
‘‘outer’’ characteristics of the flow,¹p andL:

t[AL/¹p, Ut[A¹pL. ~4.2!

In the rest of the paper we omit the tildes on the dimensi
less variables. The dimensionless MZS equations take on
form

dVj

dt
52G jVj1¹pj1Wj , ¹pj5¹p51, ~4.3a!

dun j

dt
52gnun j1Nn j1Dn jwj , ~4.3b!

j 51,2, . . . ,̀ , n5 j , j 11, . . . ,̀ .

Here the shell variablesun j are the velocities of statistically
identical~nj! eddies of characteristic scalesn that belong to a
j zone of widthsj . Clearly, in Eqs.~4.3b! n> j . The PM
variablesVj (t) describe the velocities of coherent near-w
structures in thej zone. In our notation the near-wall turbu
lent ~nj! eddies haven5 j . These eddies also occupy allj
zones withj >n. Therefore, in our approach

un j5unn[un for j >n.

The terms on the RHS of the dimensionless MZS equati
~4.3! are as follows:

G j5
Gj

Re
k j

2, gn5
gn

Re
kn

2, k j[
1

2sj
, ~4.4a!

Wj5dk j~uj 21
2 2uj

2!, ~4.4b!

wj5
d

2s j
~Vj2Vj 11!uj* , s j[ (

j 8> j

sj 8 , ~4.4c!

Nn j5Nn j1Dn j (
j 8. j

sj 8
s j

~Nn j82Nn j!, ~4.4d!

Nn j5 i ~akn11un11,j* un12,j1bknun21,j* un11,j

2ckn21un22,jun21,j !. ~4.4e!

Here

a1b1c50, (
j >1

sj51.

Equations~4.4! contain only one physical parameter, the fri
tion Reynolds number

Re5LUt /n0 , ~4.5!
8-12



ar

um

is

As

he

ved

he

r

MULTIZONE SHELL MODEL FOR TURBULENT WALL . . . PHYSICAL REVIEW E 68, 046308 ~2003!
and a set of geometry dependent, dimensionless factorsGj ,
gn , and sj . For channel and pipe flows the factorsGj
5n j /n0 and sj are given in Table I. For simplicity in this
paper we takegn5Gn .

B. Conservation laws and fluxes

In the invisid (G j5gn50), unforced (¹pj50) limit Eq.
~4.3! conserves energyE, linear momentumP, and ~quasi!
angular momentumM:

E5
1

2 (
j 51

`

sj S uVj u21 (
n51

`

uun ju2D , ~4.6a!

P5(
j 51

`

sjVj8 , ~4.6b!

M5(
j 51

`

sjVj9 . ~4.6c!

In the general case, with nonzeroG j , g j , and¹pj the direct
calculation ofdE/dt, dP/dt, and dM/dt with the help of
Eq. ~4.3! gives

dE
dt

5«12«2, ~4.7a!

dP
dt

5p12p2, ~4.7b!

dM
dt

5m12m2. ~4.7c!

Here «1, p1, and m1, are total influxes of the respective
integrals of motion,E, P, andM, and«2, p2, andm2, are
their total rates of dissipations. As for Eqs.~4.6! these ob-
jects can be represented assj -weighted sumsS j sj (¯) of the

respective densities ofpartial influxes (« j
1 , pj

1 , and mj
1)

andpartial rates of dissipation in thej zone:

«15(
j 51

`

sj« j
1 , « j

15¹pjVj85Vj8 , ~4.8a!

p15(
j 51

`

sjpj
1 , pj

15¹pj51, ~4.8b!

m15(
j 51

`

sjmj
1 , mj

150, ~4.8c!

«25(
j 51

`

sj« j
2 , « j

25G j uVj u21 (
n51

`

gnuun ju2, ~4.9a!

p25(
j 51

`

sjpj
2 , pj

25G jVj8 , ~4.9b!
04630
m25(
j 51

`

sjmj
2 , mj

25G jVj9 . ~4.9c!

The total influx of energy is exactly equal to the total line
momentum of the flow~due to our normalization¹p51)
and the total influx of the linear momentum equals unity:

«15¹p(
j 51

`

sjVj85¹pP5P, ~4.10a!

p15¹p(
j 51

`

sj5¹p51. ~4.10b!

For channel and pipe flows, the influx of angular moment
m150. In planar Couette flow,p150 andm1Þ0.

Notice that the main part of the influx of momentum
always flowing into the first few zones, wheresj have con-
siderable values. For example, in the channel,'81% of the
total p1 flows into the first zone~occupyings1'0.81 part of
the cross-sectional area; see Table I!, 93% into the first two
zones, and only about 1% to the fifth and all higher zones.
we show below,Vj8 slightly decay withj; hence the influx of
energy is even more confined to the first zones.

For very high Reynolds numbers the dissipation of t
conserved quantities occurs at largej ~or n!, ; log2 Re.
Therefore for log2 Re@1 there exists an inertial interval~gen-
erally speaking, different for the different quantities!.
Clearly, in the stationary case the influx of some conser
quantity has to be equal to its flux~in the shell space or via
zones!. For the energy, it is useful to analyze the flux in t
shell space:

«15«n5«25P, «n5(
j 51

`

«n j , ~4.11!

where«n j is usual for shell model~in the j zone! expression
of the flux of energy from thenth to the (n11)th shell.

The flux of the linear momentumpj from the j to ( j
11) zone is given by Eq.~3.22!, which in the dimensionless
form readspj5duj

2/2. Therefore, in the stationary case, foj
in the inertial interval,

pj5duj
2/25p15p251. ~4.12!

To get the expression for the value ofpj valid for any j ~not
only in the inertial interval!, we multiply Eq.~4.3a! by the j
zone areasj , and sum up from 1 toj. This gives the useful
equation

pj5duj
2/25(

i 51

j

si~12G iVi ! for any j , ~4.13!

which allows us to express the turbulent velocityuj5uj j ,
generating the turbulent energy cascade in thej zone, viaPM
velocities.
8-13
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C. Galilean invariance of the model

The Galilean transformation to the reference syste
moving with some velocityU0 in the streamwise directionx̂,
changes

V~r,t !⇒
G

V~r,t !1 x̂U0 .

According to Eqs.~A9a! and ~3.14!, it leads to the transfor-
mation:

Vj~ t !⇒
G

Vj~ t !1U0 . ~4.14!

Clearly, the termwj , Eq. ~4.4c!, describing the effect of the
mean velocity on the turbulent subsystem, is Galilean inv
ant:

wj5
d

2s j
~Vj2Vj 11!uj* ⇒

G
wj . ~4.15!

In other words, the uniform velocity profileV(r)5 x̂
3const does not affect the statistics of turbulence. This
portant invariance of the MZS equations guarantees tha
Re→` the mean velocity profile in the core of the flo
becomes uniform and the statistics of turbulence beco
space homogeneous, as expected.

D. Asymptotic scale invariance and equations
for the turbulent boundary layer near a flat plane

Consider the MZS equation~4.3! at very largeRe in the
near-wall region,n, j . j * @1, in which the dimensionles
parameters in Eq.~4.4! can already be replaced by the
asymptotic values:

Gj⇒G, gj⇒g,

sj⇒22 j s, s j52sj . ~4.16!

This is definitely so for channel and pipe flows, say, forj *
53; see Table I. For largej the zone width is much smalle
than the local curvature radius of the wall and the discus
situation corresponds to the case of aturbulent boundary
layer ~TBL! near a flat plane.

For j > j * the dimensionless flux of linear momentu
from the j to ( j 11) zone,pj , is very close to 1 and much
larger than the direct influx into thej zone,sjpj

15sj!1 from
the external pressure gradient. Therefore in this regime
can neglect in the RHS of Eq.~4.3a! ¹p51 with respect to
Wj and simplify Eq.~4.3! to the scale invariant form

dVj

dt
52

Gk j
2

Re
Vj1dk j~uj 21

2 2uj
2!, ~4.17a!

dun j

dt
52

gkn
2

Re
un j1Nn j1

Dn j

2 Fdk j~Vj2Vj 11!uj*

1 ( 2 j 2 j 8~Nn j82Nn j!G , ~4.17b!

j 8. j

04630
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k j52 jk, k51/2s, n> j > j * , ~4.17c!

p15duj
*

22
2 /25duj

*
21

2 /251, ~4.17d!

whereNn j already has the scale invariant form Eq.~4.4a!.
The ‘‘TBL boundary condition’’ atj 5 j * , Eq. ~4.17d!, pro-
vides the influx of energy and mechanical momentum i
the TBL, Eq.~4.17!. In the initial Eq.~4.3! this role is played
by the external pressure gradient¹p51.

Equations ~4.17! have additional@with respect to Eq.
~4.3!# rescaling symmetry, namely, they remain unchang
under the transformation

Vj→Ṽj5Vj 1 j 0
,

un j→ũn j5un1 j 0 , j 1 j 0
,

t→ t̃ 5t/2j 0,

Re→Rẽ5Re/2j 0, ~4.18!

which corresponds~in the r space! to the simultaneous res
caling of the outer scaleL and the pressure gradient¹p in a
way that leaves the value of the wall shear stress unchan
¹pL5const. This symmetry of the equations means that
MZS model describes the asymptotic universality of t
near-wall turbulence forRe→`, and that the only relevan
parameter in this regime is the total influx of the momentu
p1, which is fixed by the boundary conditions~4.17d!.

In studies of the near-wall turbulence, it is customary
normalize the time and velocity units by the ‘‘inner’’ scale
instead of the ‘‘outer’’ ones; namely, we should use thevis-
cous length scaled[n0 /Ut5L/Re instead of the outer
scaleL, and the corresponding time scaletd[d/Ut5t/Re
instead oft. As one can see, this rescaling corresponds to
choice j 05 log2 Re in the transformation~4.18!. In the new
units, the MZS equations have the same form as Eq.~4.17!
with Re51:

dVj

dt
52Gk j

2Vj1dk j~uj 21
2 2uj

2!, ~4.19a!

dun j

dt
52gkn

2un j1Nn j1
Dn j

2 Fdk j~Vj2Vj 11!uj*

1 (
j 8. j

2 j 2 j 8~Nn j82Nn j!G , ~4.19b!

where we omit tildes on the new variables. Equations~4.19!
represent the MZS model for a TBL near a flat plane.

Unlike Eqs.~4.17!, in Eqs.~4.19! the zone and scale in
dices j and n can be both positive and negative: thus,V0
corresponds to the velocity of the scaled and V21 to the
structures of the scale 2d, and so on.

We can use the general formulas~3.3! to reconstruct the
mean velocity profilesVPM(r). In this case the expressio
for VPM(r) takes on an especially simple form, since
8-14
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functionsFj (r) already have a scale invariant form. Takin
into account our rescaling to the ‘‘inner’’ units, we can wri

VPM~y!5ReF(
j

VjFun~2 jp2y/2d!G , ~4.20!

wherey is the distance to the wall,Fun(j) is given by Eq.
~3.6b!, andVPM(y) is measured in units ofUt .

V. SOLUTION OF THE MZS EQUATIONS

A. Laminar velocity profile and its instability

1. Comparison of the full and PM laminar profiles

The simplest solution of the MZS equations~4.3!, in
which all un j50, corresponds to laminar flow:

Vj5Vj
0[

1

G j
5

Re

Gjk j
2 . ~5.1!

Using Eq.~3.3!, one reconstructs the laminar profile of th
PM velocity:

VPM
0 ~r!5(

j
Vj

0Fj8~r!5Re(
j

Fj8~r!

Gjk j
2 . ~5.2!

The laminar profile of the full velocityV0(r) satisfies the
linear NSE, which in the dimensionless form~4.1! reads

DV0~r!1 x̂ Re50. ~5.3!

According to Eq.~A11! thePM velocity is understood as th
PM projection of the full velocity:P̂PM$V(r)%5VPM(r).
Therefore, we expect that the laminarPM profile ~5.2!, sat-
isfies the equation, similar to Eq.~5.3!,

P̂PM$DVPM
0 ~r!%1 x̂ Re50. ~5.4!

The proof of this equation is given in Appendix B.
In the caseP̂PMD5DP̂PM Eqs. ~5.3! and ~5.4! coincide,

becauseP̂PMVPM5VPM . If so, the functionsV0(r) and
VPM

0 (r) have to coincide due to uniqueness of the solutio
of Eq. ~5.3! with zero boundary conditions. However, due
incompleteness of thePM basis,P̂PMDÞDP̂PM , and hence
the profilesV0(r) and VPM

0 (r) are expected to differ. In
other words, Eq.~5.2! cannot reconstructexactlythe laminar
profile V0(r). This is the price to pay for the incompletene
of thePM basis. Nevertheless thePM basis is ‘‘full enough’’
to allow the reconstruction of any ‘‘physically possible
mean velocity profile with good accuracy. As a first demo
stration of this fact we compare in Fig. 5 the exact and
PM laminarprofiles for channel flow, which differ only by a
few percent. This small loss of accuracy is insignificant w
respect to a dramatic simplification of the calculation sche
for V(r,t): for largeRe the mean velocity field inPM rep-
resentation hasN' ln Resignificant coefficientsVj , while in
the corresponding complete cell basis one has to accoun
;Re@N functions.
04630
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2. Instability of the laminar flow at ReÄRecr

The laminar solution~5.1! exists for allRe. For largeRe,
however, it becomes unstable with respect to excitation
turbulent near-wall eddiesuj . A simple analysis of the lin-
earized Eq.~4.3b! ~i.e., Nn j⇒0) shows that the instability
condition of thej eddy reads

g j,d~Vj2Vj 11!/2s j . ~5.5!

Substituting hereVj from Eq. ~5.1! one gets

gjk j
2

Re
,

d

2s j
S 1

Gjk j
22

1

Gj 11k j 11
2 DRe,

which can be rewritten as the condition forRe:

Re.Rej[k j
3/2As j

sj

gjGjGj 11

d~Gj 112Gjk j
2/k j 11

2 !
. ~5.6!

It is clear thatRej}k j
3/2; therefore, usually the first unstabl

zone is the first one,j 51.
We want to stress that Eq.~5.6! gives a correct instability

threshold only for thefirst unstable zone:

Recr5Re15k1
3/2A s1g1G1G2

s1d~G22G1k1
2/k2

2!
. ~5.7!

The excitation of turbulence in, say, the first zone will lead
a significant momentum flux from the first to the seco
zone. As a result, the mean velocityV2 will increase, the
second zone velocity gradientV22V3 will increase too, and
the instability condition foru2 will be therefore satisfied for
smaller Reynolds numbers than predicted by Eq.~5.6!. We
will show later that the real instability threshold for thej th
zone is proportional toRej}k j , i.e., is much smaller than
the ‘‘laminar’’ result ~5.6!.

B. Wall-bounded flows in the approximation of near-wall
eddies„aÄbÄcÄ0…

In Sec. IV A we found the laminar solution of the MZ
equations~4.3! with un j50 and showed that this solutio
becomes unstable atRe5Recr with respect to excitation of

FIG. 5. Comparison of the exact~solid line! and PM ~dashed
line! laminar profiles for channel flow. The ratio of the two profile
is shown by the dotted line. Its values are marked on the right a
8-15
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the near-wall velocityu1[u11. As the next step in this sec
tion we analyze a much more general solution of Eqs.~4.3!,
that allows nonzero values of all near-wall velocities,uj j
[uj . The jj eddies can be excited by a direct interacti
with the PM velocities Vj . To prohibit turbulent cascade
leading to excitation of othernj eddies~with n. j ), one can
neglect in Eq.~4.3b! the interaction termNn j ~i.e., put a
5b5c50). In this case the MZS equations~4.3! take on a
simple form:

dVj

dt
52G jVj111dk j~uj 21

2 2uj
2!, ~5.8a!

duj

dt
52g juj1

d

2s j
~Vj2Vj 11!uj* . ~5.8b!

The solution of these equations in the stationary reg
(d/dt50) is presented in Appendix C. Note that this rath
complicated case can be solvedanalytically in the MZS ap-
proach. The main results of the analysis are as follows.

~1! The j th turbulent velocity becomes unstable at Re
nolds numberRej}k j , which is much smaller than the criti
cal Reynolds number~5.6! estimated on the analysis of th
linear stability problem. For large enoughRe the number of
nonzero, unstable turbulent velocities ism(Re); log2 Re.

~2! The total momentumP of the flow ~i.e., total flux of
the fluid! does not grow infinitely as Re→`, but goes to
some finite value. In other words, neglecting the dissipat
of energy in turbulent cascades, one concludes that with
given cross-sectional area of the flow and pressure grad
the total flux of the fluid reaches some limit in spite of t
infinite decrease of the kinematic viscosity. The numeri
and analytical calculations for the channel geometry, sho
in Fig. 6, support this unexpected conclusion. In Fig. 6 o
sees small oscillations ofP with period D(log2 Re)51; this
effect is an artifact of model discretization with spacing p
rameterl52 and has no physical meaning.

The reason for such strange behavior ofP(Re) is that the
stationary zone velocity differencesDVj in the unstable re-

FIG. 6. Total momentum of the flow vs. the Reynolds numb
Re. Circles denote numerical data for the channel flow,d50.046;
solid lines the analytical prediction@Eq. ~C5!# for different number
of unstable zonesm, m51,2,...~from left to right!.
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gion j ,m are determined solely by the dissipation of turb
lent eddiesg j @see Eq.~C2!# that go to zero asRe→` ~for
finite j!. Thus, in the limit Re→`, DVj→0 and Vj
→const. This conclusion is illustrated in Fig. 7. Clearly, f
large Re the first few velocities remain unchanged, and t
only effect of increasingRe is the shift of the ‘‘dissipative
cutoff’’ towards the smaller scales. However, the total m
mentum is determined mainly by the first few zones and t
remains the same.

This analysis shows importance of the turbulent casc
for the experimentally observed characteristics of real flo
i.e., infinite increase of the total flux, logarithmic profile
etc. The stationary conditionDVj5DVj

cr will hold even if
one accounts for a turbulent cascade, which adds sometur-
bulent dampingg j

T for turbulent near-wall eddies instead o
the usual oneg j . The turbulent dampingdoes not vanish in
the limit Re→`. Thus, one obtainsDVj5DVj

crÞ0, and the
total momentum will infinitely increase, as it is shown
Sec. IV C.

C. Wall-bounded flows in the turbulent viscosity approximation

In this section we show that even a rough account of
turbulent cascade in the MZS model already gives qual
tively correct analytical results.

1. MZS equations in the turbulent viscosity approximation

In the fully developed turbulent regime, the action of t
interaction termNn j on the eddyun j can be approximately
accounted for in the ‘‘turbulent viscosity’’ approximation i
which the energy flux from the energy containingjj eddies
toward small scales in thej zone is replaced by a nonlinea
damping term, ensuring the same loss of their energy. F
mally, this can be done by replacing the nonlinear termNj j
in the full MZS equations~4.19! by some effective turbulen
damping termg j

T :

Nj j ⇒2g j
Tuj , g j

T5ak j uuj u, ~5.9a!

a'~a2c!. ~5.9b!

r FIG. 7. Mean zone velocitiesVj vs the zone indexj for different
Reynolds numbersRe.
8-16
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Here g j
T is chosen as the turnover frequency ofjj eddies,

k j uuj u with some dimensionless prefactora. This prefactor is
evaluated in Eq.~5.9b! by equating the total rate of energ
dissipation in the model system with the effective turbule
damping~5.9a! and the energy flux toward small scales
the full shell model~see, e.g., Ref.@3#!.

In the suggestedeffective turbulent dampingapproxima-
tion, the MZS equations~4.19! take the form

dVj

dt
52G jVj11dk j~uj 21

2 2uj
2!, ~5.10a!

duj

dt
52~g j1ak j uuj u!uj1

d

2s j
~Vj2Vj 11!uj* .

~5.10b!

These equations are different from the MZS equations in
near-wall eddy approximation, Eq.~5.8!, by only the term
proportional toa.

For largeRe in the near-wall region Eq.~5.10! has a sim-
pler, scale invariant form, in which all geometry depend
factors are taken in their small scale limit~4.16!:

dVj

dt
52

Gk j
2

Re
Vj111dk j~uj 21

2 2uj
2!, ~5.11a!

duj

dt
52S gk j

Re
1auuj u Dk juj1

dk j

2
~Vj2Vj 11!uj* ,

~5.11b!

wherek j52 j /2s.

2. Inertial interval solution

In this section we consider the stable stationary solut
of Eq. ~5.10!,

Vj5
2&a

d3/2 @q~Re!2 j #1
Ad

&a

g

G
, j .3, ~5.12!

obtained in Appendix D.
Notice that the onlyRedependent factor in Eq.~5.12! is

the position of the viscous cutoffq(Re), given by the Eq.
~D6b!. Countingj from q(Re), one has Re independentPM
velocities. In the physical space this corresponds to the
versality of the TBL profile measured in the ‘‘wall units
y15y Re.

One can easily see that the set of zone velocities~5.12!
linear in j in the inertial interval corresponds to the logarit
mic profile of the mean velocity in the physical space:
V(y); ln(y Re/L). Actually, by a direct calculation one show
that the logarithmic profile

Vlog~y!5
1

kK
lnS y Re

L D1B, ~5.13!

corresponds to the zone velocities
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Vj
log5

ln 2

kK
~ log2 Re2 j !1S B2

11gE2 ln~4/p!

kK
D

.
0.69

kK
~ log2 Re2 j !1B2

1.34

kK
, ~5.14!

wheregE.0.58 is the Euler gamma constant.
Thus, the MZS model describes the transition to the u

versal logarithmic profile with the von Ka´rmán constant

kK5
ln 2

2&

d3/2

a
.0.25

d3/2

a
. ~5.15!

D. Numerical analysis of the turbulent channel flow
in the MSZ model

This section is devoted to the numerical analysis of
MZS model of channel flow in the effective turbulent dam
ing approximation, Eq.~5.10!. For simplicity we adoptgj
5Gj . The PM damping factorGj was found according to
Eq. ~3.17! as the matrix elements of the viscous operator
the real part of thePM basisF j8(y). This gives

Gj52 j 12sj .

The parametersd54.631022 anda55.931023 were cho-
sen to reproduce the experimental values of the unive
constantskK'0.4 andB'5.2.

In numerical analysis, 30 zones were sufficient to descr
the flows with Reynolds number up to 109. In order to find
the stationary solution of the full MSZ equations~5.10! we
develop extremely stable and efficient iteration procedu
based on the essential physics of the problem; see Appe
E. In spite of the huge Reynolds numbers, the accuracy
ter than 1026 was reached with about 100–200 iteration
Actually, using our approach the~MZS model and the itera-
tion procedure! one can simulate turbulent wall-bounde
flows for arbitrarily large Re with a very modest PC, even
with a XT486PC at 40 MHz, 8 Mbytes of RAM.

1. Behavior of the zone velocities Vj and uj

In Fig. 8, left panel, we plotPM velocitiesVj for different
Refrom 500 to 53108. One clearly sees the inertial interva
where Vj decrease linearly withj in agreement with Eq.
~D2!. As we mentioned above there is a ‘‘soft’’ viscous cu
off, that involves last two zones. In order to demonstrate
phenomenon of universality, in the right panel of Fig. 8 w
replot the same velocitiesVj as functions of the ‘‘near-wall’’
zone indexj 2 log2 Reas suggested by Eq.~5.12!. There is a
perfect collapse of all lines. Importantly, they collapse n
only in the inertial interval, but also in the dissipative cuto
range. There is a non-negligible difference for the first two
three zones,j 51,2 ~see the inset in the right panel! that is
caused by the non-negligible momentum influx in the
zones. This deviation is described by Eq.~D2!.

Figure 9 shows the magnitudes of the near-wall turbul
eddiesuuj u for the same set ofRe’s. Again, the numerical
results are in full agreement with our theoretical understa
8-17
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FIG. 8. PM velocitiesVj for different Reynolds numbersReas a function of the zone indexj ~left panel! and of the ‘‘near-wall’’ zone
index (j 2 log2 Re) ~right panel!. The lines from lower to upper correspond to log2 Re59, 13, 17, 21, 25, and 29, respectively.
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ing: the magnitudes of the near-wall eddies in the iner
interval are constant, as it required by Eq.~D5! from the
condition of the constancy of momentum flux. At the dis
pative cutoff we observe a decrease ofuj involving 3–4
zones. A small decrease ofuj at the first few shells is cause
by the nonzero momentum flux into these zones; in this
gion uj with good accuracy can be found from

pj5duj
2/2512s j 11 . ~5.16!

To check how the approximation of turbulent viscosity, E
~5.9!, affects the resulting mean velocity profile we compa
in Fig. 10 the solutions of the full MZS equations~4.19!
~black squares! and MZS equations~5.10! in the approxima-
tion of turbulent viscosity, Eq.~5.9! ~empty circles!. These
solutions practically coincide except for three zonesj
512,13,14) near the viscous cutoff. In these zones just a
shells are excited in the full model~4.19! and the observed
difference is an artifact of discreteness of the scale spac
the shell models@recall that in the shell model~4.19! the
spacing parameterl52]. In the case when the details o
turbulent cascades near the wall are physically impor
~e.g., in turbulent flows with polymeric additives! one has to

FIG. 9. Magnitude of the near-wall turbulent eddiesuuj u as a
function of the zone indexj for different Re. The lines are marked
as in Fig. 8.
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use more detailed shell representation of turbulent velo
field, say withl5& or evenl521/4, preserving the inter-
action range in the scale space unchanged. This modifica
of our model is under construction and will be publish
elsewhere.

We expect that more detailed models withl,2 will give
the mean profile closer to that given by the reduced mo
with turbulent damping~5.10!, in which the energy dissipa
tion is affected by the scale spacing. In this paper we are
interested in details of turbulent cascades and will use fur
only Eqs.~5.10!.

2. Reconstruction of the mean velocity profile

Equation~3.3! reconstructsPM velocity profile VPM(y)
from the set ofVj . For the case of the channel flow one h

VPM~y!5(
j 51

`

VjF j8~y!,

F j8~y!5 (
m52 j 21

2 j 21

pmf2m21~y!, ~5.17!

FIG. 10. Comparison of numerical solutions of the full MZ
equations~4.19! ~black squares! and the MZS equations~5.10! in
the approximation of turbulent viscosity~5.9! ~empty circles!. Re
5106.
8-18
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wherepm andfm(y) for channel geometry are given by E
~A13!. The results of such reconstruction for a set ofRe’s are
shown in Fig. 11. We see that reconstructedPM-profiles
show all qualitative features of the ‘‘real’’ mean velocity pr
files in the well-developed turbulent regime; namely, t
meanPM velocity is almost constant in the main part of th
flow @with centerline velocity increasing withReas ln(Re)].
As expected, all fall ofV(y) occurs in a small region nea
the walls. It is also clear that the width of this near-w
region decreases asRe increases, in the same way as in re
flows.

Figure 11 shows that thePM profiles have some non
physical ‘‘wiggles.’’ They originate from the incompletene
of the PM basis. Indeed, thePM basis is constructed by Eq
~A2! from the completef basis with some prescribedm
dependence for eachj function. As a result, thePM expan-
sion ~5.17! can be understood as the Fourier expansion
fm(y)}sin(k2m212y) with discontinuities of the Fourier am
plitudes at the ‘‘zone boundaries’’m52 j , which produces
the wiggles in they representation. This artifact of the mod
can be removed in different ways. The simplest one is to
some functionṼ(y), orthogonal to allPM basis functions
~and thus having zero momentum!, the amplitude and the
shape of which are determined from the problem of minim
zation of discontinuities in the spectrum. It can be shown t
the result of such a ‘‘smoothing’’ is fully acceptable for mo
purposes.

Figure 12 displays thePM velocities in the near-wall re
gion y!H in log-linear scale for differentRe’s from ;1.3
3105 to ;53108. The distance from the wall is measure
in near-wall viscous lengths,y15y/d5y Re/H. The col-
lapse of profiles for different Reynolds numbers is evide
One can see the viscous sublayer~for y1<10) and universal
logarithmic profile~for y1>50).

3. Comparison of the MZS universal mean velocity profile
with experiment and DNS results

In Fig. 13 we compared the reconstructed MZS univer
mean velocity with the DNS results in a channel, Ref.@19#
and with the laboratory measurements atRe up to 3.5
3107, presented in Ref.@20#. The DNS data are available fo

FIG. 11. ReconstructedPM velocity profilesVPM(y) for differ-
ent Reynolds numbers.
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y1,100, while the experimental data are obtained fory1

.10. As expected, in the overlap region, 10,y1,100, both
results collapse. As we explained, our MZS model rep
duces the asymptotical logarithmic profile~5.13!, and the
parameters of the model,a andd were chosen to give known
values ofkK and B, that parametrize Eq.~5.13!. Therefore,
as expected, the MZS profile, displayed in Fig. 13 as a s
line, coincides with the experimental date in the region
large enoughy1. The point is that the MZS dependenc
VPM(y1) practically coincides with the DNS and exper
mental data in all regions ofy1. It means that the MZS
model correctly describes the basic physics that affects
mean velocity profile in the universal near-wall region
turbulent boundary layer near the flat plane. The MZS
scription of the viscous and the buffer layersdoes not require
adjustable parameters.

4. Reconstruction of the profile of the energy dissipation

The total dissipation rate« j
2 in j-zone, Eq.~4.9a!, can be

split into the dissipation rate in thePM velocity subsystem
«̃ j

2 and the dissipation rate in the turbulent subsystem«̂ j
2 :

FIG. 12. Collapse of the mean velocity profiles in the near-w
units. Different lines~from below to above! correspond toRe
5217;1.33105, 221, 225, and 229;53108.

FIG. 13. Comparison of the reconstructed MZS universal m
velocity profile V(y1)/Ut , ~solid line in the region 1<y1<103)
with the DNS results in a channel, available in Ref.@19# for y1

,102 ~dashed line!, and with the measurements in a pipe, tak
from Ref. @20# for y1.10 ~empty circles!.
8-19
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« j
25 «̃ j

21 «̂ j
2 ,

«̃ j
25G j uVj u2, «̂ j

25(
i< j

gef,i uui u2. ~5.18!

In the turbulent viscosity approximation the effective dam
ing is given by

gef,j5g j1ak j uuj u. ~5.19!

Figure 14 displays as empty circles the dissipation den
in turbulent subsystem, normalized by the near-wall len
scale, i.e.,«̂ j

2/Re as a function of the ‘‘wall zone number
defined here as

j 1[ j 2 log2 Re12. ~5.20!

The black squares in this figure show thePM velocities in
the ‘‘wall-zone’’ representation, i.e., values ofVj 1 for the
sameRe553108. The solid line is the logarithmic plot o
the reconstructed~from this set ofVj ) PM velocity in the
physical space, i.e.,VPM(y1) vs log2 y1, shown from above.
As one sees, the solid line goes very close to the bl
squares, as it should according to the interpretation of
PM velocities Vj 1 as a ‘‘physical’’ velocity at some poin
within j 1 zone, as explained in Sec. III B 4. As is clear fro
Fig. 14, the wall zone numbers~5.20! are chosen to give a
very simple ‘‘correspondence rule’’:

wall zone index j 1⇔wall distance y1522 j 1
.
~5.21!

This approach can be used to restore the spatial distribu
of various turbulent characteristics. In particular, we can
derstand« j 1

2 , presented in Fig. 14, as«2(y1) with y1

5(22 j 1
). As expected, the dissipation rate~normalized, as

in Fig. 14, byRe! is Reindependent asRe→`. In this sense,
the results in Fig. 14 can be considered as universal.

FIG. 14. Mean velocitiesVj 1 ~black squares! and turbulent dis-
sipation rates« j 1

1 ~empty circles! in the wall-zone representatio
j 1, introduced by Eq.~5.20!. Solid line, reconstruction of thePM
velocity profile ~in wall units! VPM(y1) vs distancey1 in wall
units, shown above.Re553108.
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expected, at largeRethe main energy dissipation occurs in
narrow near-wall region,y1,40. The dissipation rate at th
wall in our model is equal to

«uwall5 lim
j→`

«̂ j
2/Re'0.21, Re.104, ~5.22!

which is reasonably close to the result for smallerRe, avail-
able in the DNS of Ref.@21#:

«uwall50.166, Re;200. ~5.23!

Notice the difference inRe’s and that our result~5.22! is
obtained in the simple model with just two adjustable para
eters, chosen to adjust very different characteristics of
flow, the mean velocity profile. This allows one to consid
the reasonable correspondence of Eqs.~5.22! and ~5.23! as
an argument in favor of our simple MZS model.

5. Re dependence of the global flow characteristics

Clearly, our approach allows one to evaluate various g
bal characteristics of the turbulent wall bounded flows.

The first example is theRe dependence of the total mo
mentum~i.e., total flux! of the flow, shown in Fig. 15. There
is a laminar regime forRe,17, and a developed turbulen
regime for, say,Re.100. The ‘‘period-2’’ oscillations are an
artifact of the model, caused by the discretization with t
spacing parameterl52. These oscillations, however, ar
small and should be ignored. In principle, they can be
moved in more ‘‘advanced’’ versions of the MZS model wi
few variables in eachj zone,Vj ,s ,uj ,s , responsible fors
subzones of thej zone.

The second example is theRe dependence of the tota
energy of the system, as well as parts of the energy, cont
ing in the mean and turbulent subsystems, shown in Fig.

The last, but not least, example is theRe dependence of
the total energy dissipation and that for theV and u sub-
systems, shown in Fig. 17. Total energy dissipation is eq
to the total energy influx, i.e., to the total momentum of t
flow. However, the distribution of energy dissipation b
tween two subsystems is very interesting.

FIG. 15. Dependence of the total momentum of the flowP on
the Reynolds numberRe in channel flow.
8-20
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One clearly sees that some flow characteristics, like
energy of the turbulent subsystem and the energy dissipa
in the mean flow subsystem remain finite for vanishing flu
viscosityn0 . At the same time, other characteristics, such
the total linear momentum, the energy of the mean flow s
system, and the rate of energy dissipation increase infini
@like ln(1/n0)], i.e., demonstrate a phenomenon ofviscous
anomaly. The MZS model clearly demonstrate that t
physical reason for that anomaly is the separation in
physical space of the external forcing and the friction:
external pressure gradient, that accelerates the flow, act
the whole cross-sectional area of the flow, while the fricti
force, that prevents the mean velocity from infinite grow
acts only on the walls. To be able to maintain the const
flux of the linear mechanical momentum toward the wall, t
amplitudes of the near-wall eddies of all scales,uj , must be
j independent. This immediately leads to a linear increas
Vj with j, decreasing from the viscous cutoff valuej 0 toward
the beginning of the cascadej 51. Thus the value ofV1 is
proportional to the total number of cascade steps,j 021. De-
crease ofn0 to one-half of its value adds one more step in t
inertial interval of the momentum cascade. This leads to

FIG. 16. Dependence of the total energy~A!, the energy of the
meanV-subsystem~B!, and the energy of the turbulentu subsystem
~C! on the Reynolds numberRe.

FIG. 17. Dependence of the total energy dissipation~A!, energy
dissipation in the meanV subsystem~B!, and energy dissipation in
the turbulentu subsystem~C! on the Reynolds numberRe.
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increase ofV1 by ; ln 2. In dimensional units this corre
sponds to the increase ofV1 by ;Vt ln 2;ln 2AL¹p.

VI. SUMMARY

We developed a multizone shell model for wall-bound
turbulent flows in a piecewise approximation, dividing th
cross-sectional area into a set ofN; log2 Re jzones. In each
zone the turbulence is assumed to be homogeneous a
described in the framework of a shell model equation for
‘‘turbulent’’ shell velocitiesun j(t). The mean velocity is de-
scribed by an additional set ofN zone variablesVj (t), which
allow us to reconstruct the mean velocity profile with t
help of a specially designedPM basis.

The MZS model conserves the actual integrals of mot
of the original NSE of the problem,energy and linear and
angular momenta; respects Galilean and ‘‘asymptotic’’ sca
invariance, the NSE type of nonlinearity; and, in a relative
simple and analytically transparent manner describes the
sic physical phenomena in wall-bounded flows for a hu
interval of Reynolds numbers. They include~1! the laminar
velocity profile for Re,Recr ; ~2! its instability at Re
5Recr ; ~3! intermediate, nonuniversal mean velocity profi
at moderate Re;~4! universal profile forRe@Recr in the
viscous sublayer, buffer layer, and logarithmic-law regio
~5! spatial distribution of turbulent activity, of the rate o
energy dissipations, etc.

The model also allows additional adaptation of the MZ
equations for the first few~energy containing! shells to par-
ticular flow geometries~like channel, pipe, Couette flows
etc.! which may be based on stability analysis of the lamin
regime or some other specific geometrically determined
formation. This should improve description of the flow fo
moderate Re,1000.

The model may also be generalized to the case of
coelastic turbulent flows~by adding additional shell variable
for the polymeric additives!, particle laden suspensions, et
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APPENDIX A: PM BASIS, PROPERTIES,
AND INTERPRETATION

1. Construction of the PM basis

To construct a ‘‘physically motivated’’ basis for descrip
tion of thePM-velocities, which meets requirements of Se
III B 1, we consider two subsets of eigenfunctions of t
Laplace operator,fm

1(r) and fm
2(r), satisfying the incom-

pressibility condition. The no-slip boundary conditions a
assumed in the cross section of the flow, with the constra

pm5~ x̂,fm
1!Þ0, ~A1a!

Rm5~R,fm
2!Þ0, ~A1b!
8-21
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dictated by Eq.~3.2!. Notice that both setsfm
1 and fm

2 are
chosen here as real and orthonormal.

Introduce the complexPM basis as follows:

Fj~r!5 (
mPSj

Fpmfm
12 i

Rm

Rj
fm

2G , ~A2a!

mPSj⇔2 j 21<m<2 j21. ~A2b!

The normalization ‘‘radius’’Rj is chosen such that

~Fj8 ,Fj8!5~Fj9 ,Fj9!, ~A3!

where

Fj8~r![Re@Fj~r!#, Fj9~r![Im@Fj~r!#.

Denote

sj[~Fj8 ,Fj8!5 (
mPSj

pm
2 . ~A4!

We show below that

(
j 51

`

sj51, ~A5!

which allows us to understandsj as a portion of the cross
sectional area, occupied by thej zone. Then, the first of Eqs
~1.10! gives the definition ofSj , the area of thej zone, that
is consistent with the requirement( j 51

` Sj5S' .
To find Rj from Eq. ~A3!, compute also

~Fj9 ,Fj9!5
1

Rj
2 (

mPSj

Rm
2 . ~A6!

Then

Rj
25sj

21 (
mPSj

Rm
2 . ~A7!

2. Orthogonality and normalization conditions

By construction~A2!, ~A3! the PM basis is orthogonal in
the sense

~Fj ,Fj 8!52sjD j j 8 , ~A8a!

~Fj* ,Fj 8!50. ~A8b!

The idea behind the choice~A2! is that the functionsFj8 and
Fj9 form theexactexpansions of the uniform profile of un
height (Fj8) and of the linear profile (Fj9):

(
j

Fj8~r!5 x̂, ~A9a!

(
j

RjFj9~r!52R. ~A9b!
04630
These relations can be easily proven by projection of b
sides of Eq.~A9! onto the Laplace basisfm

6 , using Eq.~A1!
and the definition of thePM functionsFj (r), Eq. ~A2!.

Let us show that Eq.~A5! follows from the obvious con-
straint (x̂,x̂)51, after substitution ofx̂ from Eq. ~A9a!. Us-
ing also the orthogonality conditions~A8! one gets

15~ x̂,x̂!5 (
j , j 851

`

~Fj8 ,Fj 8
8 !

5
1

4 (
j , j 851

`

~Fj1Fj* ,Fj 81Fj 8
* !

5(
j 51

`

sj .

We proved that allsj add up to unity according to Eq.~A5!.

3. PM expansions

Introduce thePM projector

P̂PM$f~r!%52 Re(
j

~Fj ,f!

~Fj ,Fj !
Fj~r!

5Re(
j

sj
21~Fj ,f!Fj~r!, ~A10!

and define thePM velocity VPM(r,t) as the projection of the
full field V(r,t) on thePM basis:

VPM~r!5P̂PM$V~r!%. ~A11!

Using the normalization~A8! one gets Eq.~3.3!, in which

sjVj~ t ![~Fj ,V!5~Fj ,VPM!. ~A12!

The expansion coefficientsVj (t) are PM velocities in the
zone representation.

Substitutingx̂ andR from Eqs.~A9! into the definitions
~3.1! of P andM, one gets with the help of Eqs.~3.3! the
PM expansion of the linear inV integrals of motion, Eqs.
~3.5!. These equation give a proof of the statement that o
thePM part of the full velocityV(r,t), Eq.~3.3!, contributes
to the mechanical momenta. The turbulent partVT(r) does
not contribute to the linear integrals of motion and will b
considered as a part of the ‘‘turbulent ensemble,’’ describ
by the shell variablesun j(t).

4. PM basis for the channel and pipe flows

In the planar geometry, Fig. 1,r ⇒y and the functions
fm

6 in Eq. ~A2! are given by

fm
1~y!5 x̂f2m21~y!,

fm
2~y!5 ẑf2m~y!,

fm~y!5& sin~kmy!, km5pm/~2H !, ~A13a!
8-22
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pm5
2&

p~2m21!
.0.9/~2m21!. ~A13b!

For the pipe geometry,

fm
1~r!5 x̂fm~r!, fm

2~r!5êfm~r!, ~A14a!

fm~r!5J0~kmr!/J1~kmR!, ~A14b!

J0~kmR!50, pm52/~kmR!, ~A14c!

whereê is the polar-angle unit vector (ê' x̂,ê'r̂), J0(j) and
J1(j) are the Bessel functions of the zeroth and first ord
and R is the radius of the pipe. The first of Eqs.~A14c!
defines km5jm /R via zeros of the Bessel function
jm : J0(jm)50.

APPENDIX B: EQUATION FOR THE LAMINAR
PM PROFILE

Here we present a proof that the laminarPM profile
VPM

0 (r) given by Eq.~5.2! satisfies Eq.~5.4!.
To this end, we recall that the damping parametersGjk j

2

are defined as matrix elements:

Gjk j
252sj

21~Fj8 ,DFj8!. ~B1!

Substituting this definition into~5.1!,~5.2!, we obtain

VPM
0 ~r!52Re(

j

sjFj8~r!

~Fj8 ,DFj8!
. ~B2!

Then, the Laplacian ofVPM
0 is equal to

DVPM
0 ~r!52Re(

j

sjDFj8~r!

~Fj8 ,DFj8!
. ~B3!

Acting on this Laplacian with thePM projector ~A10!, we
obtain

P̂PM$DVPM
0 %52Re(

jk

sj

sk
ReFFk

~FkDFj8!

~Fj8 ,DFj8!G , ~B4!

where one must distinguish the Reynolds number,Re, from
the notation for the real part of something, Re$¯%. Note that
by construction differentPM functionsFj belong to the dif-
ferent subspaces of the eigenfunctions of the Laplace op
tor. Also, the realFj8 and imaginaryFj9 parts of these func-
tions are orthogonal, and thus

~Fk ,DFj8!5Dk j~Fj8 ,DFj8!. ~B5!

As a result, all nondiagonal terms in Eq.~B4! vanish, and we
obtain

P̂PM$DVPM
0 %52Re(

j
Fj8 . ~B6!

Finally, using property~A9a!, we obtain
04630
r,

ra-

P̂PM$DVPM
0 %52Rex̂, ~B7!

which actually is Eq.~5.4!.

APPENDIX C: WALL-BOUNDED FLOWS IN THE
APPROXIMATION OF NEAR-WALL EDDIES „aÄbÄcÄ0…

In this appendix we analyze the MZS model in the a
proximation of near-wall eddies, Eqs.~5.8!. In the stationary
regime (d/dt50) only a finite number (m21)>0 of turbu-
lent velocities are nonzero, i.e.,uj50 for j >m. This number
depends onRe. As it follows from Eq.~5.8a!, thePM veloci-
ties Vj for j .m coincide with the laminar ones:

Vj5Vj
05G j

21;222 jRe, j .m5m~Re!. ~C1!

In the unstable regionj ,m, as follows from Eq.~5.8b!, the
zone velocity differenceDVj[Vj2Vj 11 coincides with its
critical value; see Eq.~5.5!:

DVj5DVj
cr5

2g js j

d
5Aj /Re,

Aj[2gjk j
2s j /d. ~C2!

This allows one to find allVj via the last velocity in the
unstable region,Vm :

Vj5Vm1~Bm2Bj !/Re,

Bj[(
i 51

j 21

Ai . ~C3!

Multiplying Eq. ~5.8a! by sj and summing up fromj 51 to
j 5m, one finds the equation forVm with the solution

Vm5
12sm11

Cm
Re2

Dm

Cm Re
, ~C4a!

Cm[(
j 51

m

sjGjk j
2;2m, ~C4b!

Dm[(
j 51

m

sjGjk j
2~Bm2Bj !;22m. ~C4c!

Note that in spite of the large number of different paramet
(Am ,...,Dm) all of them are provided with explicit expres
sions and can be easily evaluated.

Now one finds the total linear mechanical momentumP
~i.e., the total flux of the fluid! of the flow from its definition
~4.6b! and Eqs.~C1! and ~C4a! for Vj for j <m and for j
.m:

P5(
j 51

m

sjVj1 (
j 5m11

`

sjVj
05EmRe1Fm /Re, ~C5a!
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Em[
~12sm11!2

Cm
1 (

j 5m11

`
sj

Gjk j
2 ,

Fm[(
j 51

m

sj~Bm2Bj !2
~12sm11!Dm

Cm
. ~C5b!

So far we treated the last indexm in the unstable zones a
fixed. However, it depends on the Reynolds numberReand
is defined from the condition

Vm2Vm11,DVm
cr5

Am

Re
,

which ensures that the turbulent velocityum will not be ex-
cited,um50. This condition can be written as

Re2,
AmCm1Dm

12sm112Cm /~Gm11km11
2 !

[Rem
2 . ~C6!

Actually, there will be exactly (m21) excited turbulent ve-
locities uj , if

Rem21,Re,Rem . ~C7!

The analysis shows that this condition selects the indexm,
for which the total momentumP @Eq. ~C5!# has minimum
value.

Let us analyze the dependence~C5a! of the total momen-
tum in the limit of extremely large Reynolds number
ln Re@1, and, respectively, large critical zone numbersm. In
this case we can use the scale invariant limit for all para
eters:

Em522mẼ, Fm52mF̃, Rem52mR̃, ~C8!

whereẼ, F̃, andR̃ are some geometry dependent consta
Now for Reynolds numbers inside the range~C7! we can
write in Eq. ~C5a! x(Re)5Re/(2mR̃), where 1/2,x(Re)
,1. ThenP for large enoughRe@in the region of validity of
the scale invariant limit~C8!#, is given by

P~Re!5x~Re!ẼR̃1
F̃

x~Re!R̃
. ~C9!

Sincex(Re) is bounded between 1/2 and 1, the flux~C9! is
bounded from above by one of the constants

P~Re!<maxH ER̃

2
1

2F̃

R̃
,ẼR̃1

F̃

R̃
J ,

and does not grow infinitely for infinite Reynolds numbe
see Fig. 6.

APPENDIX D: SOLUTION OF EQS. „5.10…

Consider Eq.~5.10!. For log2 Re@1, in the inertial interval
of scales, all needed information contained in Eq.~5.10a!
may be obtained from Eq.~4.13! for the momentum fluxpj ,
04630
,

-

s.

;

in which one can neglect the damping term}1/Re. This
gives

pj5
duj

2

2
5 (

j 851

j

sj 8512s j 11 , ~D1!

where s j is defined by Eq.~4.4c!. The substitution ofuj
from Eq. ~D1! in Eq. ~5.11b! gives an expression forVj 11
via Vj . This allows one to findVj for any j outside the
viscous region via some constantV0 :

Vj5V02
&a

d3/2 (
i 51

j
s iA12s i 11

si
. ~D2!

For j . j * ~where j * is equal to, say, 3! one can take in Eq.
~D2! s j52sj!1. One concludes that in the inertial interv
the PM velocities decrease linearly inj:

Vj5V01D2
2&a j

d3/2 , j . j * , ~D3a!

D5
&a

d3/2 (
i 51

` F22
s iA12s i 11

si
G . ~D3b!

Here the geometry dependent constantD was found by com-
parison of Eqs.~D2! and~D3!, and for different geometries i
evaluates to

D'
a

d3/23H 2.7, channel,

2.4, pipe.
~D4!

Equation~D3! can be directly obtained from the conditio
of the constancy of the momentum flux~4.12!, which gives

uj5A2/d5const. ~D5!

Then, in the stationary case, Eq.~5.11b! determines thej
independent differenceVj2Vj 11 , necessary for keeping th
amplitudes of the near-wall eddies at the constant level. T
agrees with Eq.~D3!.

In the derivation of Eqs.~D2! and ~D3! we cancelled in
Eq. ~5.10b! uj5uj* , assuming thatujÞ0. At a givenRethis
assumption is valid only forj < j 0 . Here j 0 is the zone index
of the last unstable zone, for which in Eq.~5.11b!
d(ln uj)/dt.0 atuj→0. To find j 0 we consider Eq.~5.11b! as
an equation for a continuous indexq and set its RHS to zero
with uq50:

gkq

Re
5

d

2
~Vq2Vq11!5

&a

Ad
~D6a!

⇒q~Re!5 log2 Re1 log2@21&as/gAd#. ~D6b!

The indexj 0 is then the integer part ofq.
The solution Eq.~D2! has still an unknown constant,V0 .

This constant can be found from the stationarity condit
~4.12!,

p25(
j 51

`

sjG jVj85p151, ~D7!
8-24
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requiring that the total influx of the linear momentum
caused by the pressure gradient, must dissipate at the
due to the viscous friction. The productsjG j;2 j /Re. There-
fore, the sum in Eq.~D7! is dominated by the last few term
with j ' j 0@ j * . This allows one to use the more simple E
~D3! instead of Eq.~D2!:

15
G

4 Re s(j 51

j 0

2 j S V01D2
2&a j

d3/2 D ~D8a!

'
G

2 Re s
2 j 0S V01D2

2&a j 0

d3/2 D ~D8b!

'
&a

Ad

G

g S V01D2
2&aq~Re!

d3/2 D . ~D8c!

Together with Eq.~D3a! this gives the dependence ofVj on
j for the near-wall region, which is geometry independe
see Eq.~5.12!.

Notice that in the derivation of Eq.~D2! we neglected in
Eq. ~5.11b! the viscous damping termgk j

2/Re, with respect
to the turbulent oneauuj uk j . This approximation fails nea
the viscous cutoff, becausegk j /Re}2 j increases exponen
tially toward largej, while auuj u is approximately constant
More detailed analysis shows that Eq.~D2! fails only for last
two j before the cutoff, and instead of a sharp cutoff aj
5 j 0 there is a soft decrease ofVj in two zones nearj 5 j 0 ;
see Fig. 8.

APPENDIX E: ITERATION PROCEDURE FOR SOLVING
MZS EQUATIONS IN THE EFFECTIVE TURBULENT

DAMPING APPROXIMATION

Consider the MZS equations~4.10! for some largeRe. As
we discussed, there are two regions ofj, namelyj , j max and
j > j max. In the ‘‘turbulent region,’’j , j max, the laminar so-
lution, uj50, is unstable with respect to excitation of turb
lent amplitudesuj and thus, in the stationary regime,uj
Þ0. Ford.0, without loss of generality alluj can be taken
real and positive definite. In the turbulent region the stati
ary velocitiesVj anduj satisfy the equations:

G jVj511dk j~uj 21
2 2uj

2!, ~E1a!

g j1ak juj5
d

2s j
~Vj2Vj 11!,

uj>0, j , j max. ~E1b!
.

04630
all,

.

t;

-

In the ‘‘laminar region’’ j > j max:

Vj51/G j , uj50, j > j max. ~E2!

One can substituteVj from Eq.~E1a! to Eq.~E1b! and get an
equation connecting the triaduj 21 , uj , anduj 11 . Unfortu-
nately, a direct iteration procedure in this ‘‘straightforward
equation is unstable and do not converge to the station
solution.

To find the stable, stationary solution of Eqs.~E1! numeri-
cally, we develop a stable iteration procedure, which is ba
on the physical understanding of these equations as des
ing the momentum flux fromj 51 toward largej in the ‘‘in-
teraction triads’’Vj , Vj 11 , anduj . Denote asVj

(p) , Ṽj 11
(p) ,

and uj
(p) the solution of following three algebraic equation

on thej step in thepth iteration run:

G jVj
~p!511dk j$@uj 21

~p! #22@uj
~p!#2%,

G j 11Ṽj 11
~p! 511dk j 11$@uj

~p!#22@uj 11
~p21!#2%,

g j1ak juj
~p!5

d

2s j
@Vj

~p!2Ṽj 11
~p! #,

uj
~p!>0 for j max. j >1, u0

~p!50. ~E3!

As the ‘‘initial condition’’ at p50 we take the~unstable!
laminar solution:

Vj
~0!5G j

21, uj
~0!50.

In the first step,j 51, of each iteration run one take
u0

(p)50. FindingV1
(p) , Ṽ2

(p) , andu1
(p) one takes in Eq.~E3!

j 52, findsV2
(p) , Ṽ3

(p) and u2
(p) and so on until on somej 0

step one gets negative~or complex! solution for uj 0

(p) . It

means that this amplitude is stable and has to be taken z
uj 0

(p)50. Accordingly, j 05 j max. For all j . j max one takes the

laminar solution:Vj
(p)51/G j , uj

(p)50.
After that one begin the next,p11, iteration run, starting

again from its first step,j 51. It can be shown, that the ve
locitiesV1

(p) form a monotonically decreasing sequence w
increasingp and are always positive. Since a limited fro
below, monotonically decreasing sequence always h
some finite limit, this proves the convergence and stability
our iteration scheme. The calculations show that for R
nolds numbersRe<109 the velocitiesVj and uj converge
~with accuracy about 1026) after 100–200 iteration runs.
,
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