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Multizone shell model for turbulent wall bounded flows
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We suggested a multizone sh@ZS) model for wall-bounded flows accounting for the space inhomoge-
neity in a piecewise approximation, in which the cross-sectional area of theSldsvsubdivided intg zones.
The area of the first zone, responsible for the core of the w, S/2, and the areas of the ngxtones,S; ,
decrease toward the wall IiksjocZ’i. In eachj zone the statistics of turbulence is assumed to be space
homogeneous and is described by the set of shell veloaitigs) for turbulent fluctuations of the scale
proportional to 2". The MZS model includes a set of complex varial¥g&t), j=1,2, ... », describing the
amplitudes of the near-wall coherent structures of the sgale2™) and responsible for the mean velocity
profile. The suggested MZS equations of motion digj(t) and V;(t) preserve the actual conservation laws
(energy, mechanical, and angular momgntaspect the existing symmetri¢scluding Galilean and scale
invariance, and account for the type of nonlinearity in the Navier-Stokes equation, dimensional reasoning, etc.
The MZS model qualitatively describes important characteristics of the wall-bounded turbulence, e.g., evolu-
tion of the mean velocity profile with increasing Reynolds numBerfrom the laminar profile toward the
universal logarithmic profile near the flat-plane boundary layeRas>«.
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[. INTRODUCTION mittent behavior of the velocity structure functiofwhich
are simultaneous, two-pointh-order correlation function of
velocity differencey the fusion rules(which govern the
Three simple turbulent flows—in a channel, in a pipe, andasymptotic behavior of many-point velocity correlation func-
near a flat plane—play a prominent role in our understandingjons), and so on. A possible reason for such a lucky success
of spatially inhomogeneous wall-bounded flows, similar tojs that the above mentionddnd some othércharacteristics
the celebrated role of developed homogeneous turbulence ot the turbulent statistics are robust and depend only on some
understanding the universal statistical behavior of fine-scalgery general physical requirements, such as respect for the
turbulence. Along the long road toward understanding homoactual conservation laws, scale invariance, the type of non-
geneous turbulence, there appeared various phenomenologjirearity in the NSE, and the locality of interaction. All these
cal cascade models of turbulencé&he Richardson- features are accounted for in the shell models. There has
Kolmogorov 1941 concept of turbulence and thebeen a set of important attempts to construct shell models
Kolmogorov 1962 log-normal and multifractal models of in- with a real space structuf®—11].
termittency, many closure procedurdtike the Kraichnan Unfortunately, shell models in their traditional formula-
direct interaction approximationand various field theoreti- tions describe only space homogeneous turbulence, leaving
cal approaches. Last but not least we have to mention thaside wall-bounded turbulence, which plays a much more
so-called shell models of turbulendéke the GOY shell important role in practical applications.
model[1,2] together with its “Sabra” improvemen], and Turbulent flows at high Reynolds numbé&e>1, contain
many other$4]). For the recent development of shell modelssuch a wide range of excited lengths and time scales that
see the review by Biferalfs]. Separately, we want to men- direct numerical simulatioDNS) of the NSE is impossible
tion Zimin’s shell model([22]; see alsd6,7]), which was for the foreseeable future. Consequently, practical engineer-
derived from the Navier-Stokes equati@SE) using a vec- ing calculations are based on some model simplifications of
tor wavelet decompositiof8] of the velocity field and in- the NSE, with Reynolds stress models being the most popu-
volves no empirical oad hocparameters. lar approach; see, e.g., the boldi]; the review[13], and
Shell models are systems of ordinary differential equa+eferences therein. The idea of Reynalsise, e.g., Ref14])
tions which mimic the statistically homogeneous isotropicwas to divide the velocity field into a mean flow paftr)
turbulent velocity field in some interval of scalesy, within ~ and a turbulent fluctuating pau(r,t) with zero mean and to
some “shell” in the Fourier spageby one or a few “shell approximate in some way the hierarchy of equations for vari-
velocities” u,(t) [4]. The shell models have the sarfipia-  ous correlation function&orrelator$. The equation fol/(r)
dratio type of nonlinearity as the NSE, respect the consercontains the so-called Reynolds stress term, a second-order
vation of energy(in the unforced, inviscid limj; and have correlator ofu(r,t). The right hand sidéRHS) of the equa-
built-in locality of interaction of neighboring scales, reflect- tion for the Reynolds stress contains five different terms: the
ing scale-by-scale energy transfer toward dissipative scalesates of production, dissipation, turbulent transport, and vis-
Surprisingly, the shell models allow us to mimic almost ev-cous diffusion, and the velocity pressure gradient term.
erything we know(experimentally, theoretically, or by direct These are one-point, second- and third-order correlators of
numerical simulation about highly nontrivial statistics of velocity and velocity gradients and the pressure-gradient cor-
fine-scale turbulence. This includes, for instance, the interrelator. The equation for only one such object, the dissipation

A. Background
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rate, already contains eight correlators up to fourth order irmade from the very beginning, at the level of the basic, dy-
the velocity, which are usually modeled by various closurenamical equations of motion. These equations involve only
procedures in terms of lower order objects. The simplestiwo parameters, responsible for the energy and mechanical
old-fashioned Millionshchikov closur§14], p. 241 is often = momentum fluxes. These parameters can be evaluated by
invoked. It uses the nonrealistic assumption of Gaussian std&®NS of the NSE, but currently they are chosen to reproduce
tistics of turbulence. To improve the situation one can use #he von Kaman constantc, and constanB in the universal
set of phenomenological constants, which can be found blogarithmic profile of the mean velocity near a flat plane.
comparison of the results of model calculations with the re- Our model is oriented toward the classical examples of
sults of DNS or experiments on benchmark flows. wall turbulence, like channel and pipe flows and planar and

There have been attempts to use more advanced field theircular Couette flows. The physical description of the model
oretical approaches developed in the theory of homogeneowd its equations of motion are presented in the following
turbulence, e.g., the Yakhot-Orszag version of the renormalsubsection.
ization group(RNG) approacH15,16]. Instead of going into
detailed criticism of this approach, already done in R&7), B. Brief review of multizone shell model
we just make two general remarks about it, which are also , .
relevant to most attempts at straightforward transfer of the qu def'ilmg with !nhom_ogeneous waI_I turbulenge we sug-
) . ; gest in this paper piecewise homogeneity approximation
field theoretical methods of fully developed, fine-scale, ho- hich the cross-sectional area of the floBy.is subdivided
mogeneous turbulence to the case of wall-bounded flowsy "¢ & h £ the fi ' iol
First, in most case$RNG, diagrammatic perturbation ap- Into a set ofj zones The area of the first zone, responsibie

. : for the core of the flows;~ S/2, and the areas of the ngxt

proach, etg.the turbulence is assumed to be excited by some s d ¢ d th | o2 ) | hi
artificial external force with Gaussian statistics. This is a0nc>>j» Cecrease toward the wa & - 1N €achy
reasonable simplification of the real picture, if one deals with?One: the statistics of tur_bulence S assumed to be space ho-
turbulent scales that are deep enough in the inertial interval'09eNe0US and is described by its own shell model
However, this is definitely not a realistic assumption for large dup(t)
scales, which are important in the energy and mechanical T =—vnxﬁunj+J\/nj+Anjwn (1.1
momentum balance in wall-bounded turbulence. Second, in
most cases, the field theoretical approaches to homogeneous
turbulence are formulated in tHerepresentation or explic- for the shell velocitiesu,;(t), which are responsible for tur-
ity assuming space homogeneity. In this way one gets th@ulent fluctuations of thédimensionlessscales,~2 ", re-
required closure relationships, say between the effective tuferred to below agnj) eddies Hereafter,A,; is the Kro-
bulent viscosityvr, the density of the kinetic energy and  necker symbol1 for n=j and 0 otherwise Equation(1.1)
the rate of energy dissipatiqiused in the populaK-€ ver-  accounts for the viscous damping term with some effective
sion of the Reynolds stress mogdHowever, at least two of viscosity v,~ vy, wherew is the kinematic viscosity of the
these objects #; and &) are not locally defined; they are fluid. The effective shell wave vectar,,<1/s,,. The nonlin-
dominated by the largest eddies in the system, usually ofar term in Eq.(1.1), NV, is given by Eq.(2.16 and de-
scales close to the distance to the wall. Therefore one has sribes the usual triad interaction of nearest shells, inside a
be extremely careful in applying the resulting relations togivenj zone, Eq(2.12, and some interzone interaction term
wall-bounded flows in which the characteristic length of in- of similar type. The production term,, is responsible for the
homogeneity is exactly the distance to the wall. A price toenergy flux from the mean flow to the turbulent subsystem
pay for this simplification is that the phenomenological con-and is given below by E(.3.23.
stants may depend on the flow geometry or even on the Our goal is to describe the mean velocity profile
position in the flow. (V(p,1)), in which p is the two-dimensional radius vector in

By introducing enough adjustable paramet@@metimes the cross section of the flow, X, whereX is the streamwise
geometry dependentone can reach the engineering goal ofdirection. To this end we introduce additional variab¥gét)
modeling by computer some mean and turbulent characterisvith a prescribed space dependedegp), uniquely deter-
tics of particular flows of practical importance. However, mined by the flow geometry. The variabl&§(t) can be
important aspects of the basic physics of wall-bounded turunderstood as complex amplitudes of the near-wall coherent
bulence remain unclear, being masked by numerous detailstructures of the dimensionless scglewhich is the same as
or even incorrectly reproduced. the scale of thénj) eddies: s;=h, for n=j. The functions

The main goal of thi; paper is to suggest a physicallycpj(p) are chosen such thd; , ;(p) =®;(2p) and they form
transparent and analytically analyzable model of wall-an orthonormal(but incompletg basis. We call it thePM
bounded flows. The model describes the interplay of twdbasis becausgin spite of its incompletenesst is chosen
main physical phenomena in wall flows: the energy cascadsuch as to represeeiactlythe densities of the mechanical
toward small scalegas in developed homogeneous turbu-linear and angular momenfaand.M in terms ofVj(t) only:
lence and the cascade of the mechanical momentum toward
the wall in the physical space. Our model is a generalization
of the shell model of homogeneous turbulence to the case of _ A A _ D ,
inhomogeneous turbulence and accounts for a nonuniform & 2 S RAVi(O] M ; SiR; ImLV; (0]
profile of the mean velocity. Simplifying assumptions are (1.2
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HereR; is the characteristic distance of theone from the (Secs. IV C and IV D of the MZS model. In Sec. IVD we
centerline of the flow. Thé&M basis also allows one to re- derive a version of the MZS model for the turbulent bound-
construct the spatial dependence of the mean flamd its  ary layer near a flat plane, Eqgl.19.
time dependent fluctuatiopsvith finite (but very goodl ac- Section V presents a detailed analytical study of the MZS
curacy, equations in a set of approximations realistic at various val-
ues of Re In Sec. VA we show that the MZS model de-
. scribes the stable laminar velocity profile for small Re and its
V(p’t)QVPM(p'gtFRE{; Vi(t)q)i(p)} (1.3 instability at some threshold value &fe=Re,. Next, in
Sec. VB we study the MZS model in the approximation of
For thePM velocities \{(t) we suggest a simplmomentum near-wall eddies, neglecting the turbulent energy cascade.
equation This effect is accounted for in Sec. V C in the approximation
of turbulent viscosity. Section V D is devoted to a numerical
dVv;(t) 5 analysis of the MZS model.
qr vk Vit Vet W, (1.9 In Sec. VI, we summarize our findings and suggest a pos-
sible generalization of the model for the description of tur-
which includes the viscous term«7V;, pressure gradient bulent flows laden with long-chain polymeric additivés
Vp>0, and Reynolds stress tei , which accounts for the connect|9n W'th. the problem of drag reductioor with
exchange of the mechanical momentum between neare@favy microparticles, etc.
zones in the flow and is given by E(B.150.

It is crucially important that the suggesteuilti zone shell D. Notation and definitions
mode] Egs.(1.1) and(1.4), preservesin the unforced, invis- For the reader’s convenience we collect in this subsection
cid limit) all the integrals of motion relevant in the problem: some frequently used notation and important definitions.
the energy¢ and mechanical momenfaand M; and that it % and p are the streamwise direction and the two-

respects Galilean and “asymptotic” scale invariance togethegimensional radius vector in the cross section of a flow,
with the NSE type of nonlinearity. The model in a relatively pL%. In a channep=(y,z), with y as the wall normal and
simple and analytically transparent manner describes the bas the spanwise directions.

sic physical phenomena in wall-bounded flows for a huge s  p | andL are the cross-sectional area, the perimeter,
interval of Reyn0|ds numbers. The model allows one thnd the characteristic |ength of a cross section:

study the interplay of temporal intermittency in the cascades

and spatial momentum transfer, which may be important, for _ B
example, in the problem of drag reduction in wall-bounded S,=|dp, L=S,/P,. 15
flows.

In a channel of width BI, L=H; in a pipe of radiusR, L
=R/2.

. . o o Vp is the external pressure gradient, which is a positive
Section Il is devoted to the statistical description of thegonstant:

turbulent part of the multizone shé€WMZS) model Eq.(1.1).

First, in Sec. Il A we describe a way from the NSE to a dp(x)

standard shell model of homogeneous turbulence that allows Vp=- W> 0. (1.6
generalization for space inhomogeneous turbulence. Next, in

Sec. 1B we formulate a piecewise homogeneity approxima-r andU . are the characteristic time and the velocity in the
tion: the cross-sectional area of the fld&yjs subdivided into  fiow:

a set ofj zones, in each of which the statistics of turbulence

is assumed to be space homogeneous. This allows us to use =+L/Vp, U,=LVp. 2.7
the standard shell model for evgrgone and to describe the

turbulence in the whole flow by the set of shell velocities The wall shear stress 132,

unj(t) for turbulent fluctuations of the scale proportional to v, and Re are the kinematic viscosity and the friction
1/, Reynolds number

In Sec. Il we derive the dynamical equation of motion for
the so-called®M velocitiesV;, which allows one to recon-
struct with good accuracy the mean velocity proflép) in
the cross section of the flow. In particular, in Sec. IlIB we
introduce thePM basis for a wide class of wall-bounded
flows, which connect¥(p) andV;. In Sec. llIC we derive f'=Rgf], f’=Im[f]. (1.9
Eq. (1.4 for V; and for all terms involved in Eq1.4).

We start Sec. IV with a summary of the resulting MZS n, j, andp are dummy indicegnatural numbers reserved
equations, presenting them, in Sec. IVA, in dimensionlesdor the scalgor shel), zone, and position indices; some ob-
form (4.3), convenient for further analysis. In particular, we jects can be related to both the shells and zones. They are
discuss the conservation la8ec. IV B) and the symmetries used with bothn andj indices.

C. The plan of the paper

Re=U,L/v,. (1.9

f’ andf” are the real and imaginary parts of some com-
plex objectf (constant, variable, function, e}c.
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s; and o; are the fraction of the cross-sectional area oc-ions of the flow.The cell index(n,p) consists of the scale
cupied by thg zone, and the fraction of the cross-sectionalindex n=1,2,... and the position index p
area occupied by all zones toward the wall, starting from the=(Px,Py ,P,)-
zonej: The scale index r1,2, ... defines the characteristic

width L,, (in all directiong of the functionW,,(r), which
* - some @p) cell of sizeL,=L/2" “occupies” in space.
s=<, o=>7s, o= s=1 (110 The position indexp=(py,py.p,) defines the position
= =1 Ryp of the (np) cell:

L; (=sjL) is the width of thej zone and., the charac-
teristic scale in the shell.
Ky [=1/(2L,)] is the wave number in the shell; «; is

Ranan, p:(px:pyrpz)v

the wave number of thpzone. peCiepa=12,....2, a=xy.z 21
&, P, and M are the densities of the energy and of the _ ) )
mechanical linear and angular momengapfojections. One can imagine that, for any given the set of (ip) cells

e®, p*, andm™ are the total rates of pumpingvith +)  With peC, fills a periodic L3 box. The turbulent velocity
and dissipation(with —) of the conserved quantitie§ P,  field u(r,t) is given by

and M.
e; , p;, andm;" are the rates of pumpingvith +) and
dissipation(with —) in thej zone(of &, P, and M). ur,)=2 > RgU(OWp(1)], (2.2

gj, pj,» andm; are the fluxes o€, P, and M from thej to ntpetn

the (j+1) zone.

The scalar product of complex vector functioh§p) and where the amplitude of the cell expansiddy,(t), is the

velocity difference across the separationin the (np) cell.

Blp) is It is convenient to normalize the cell basis as follows:
(A B)Ef A*(p)-B(p) 2. (1.1 SRt dxdy dz
’ SJ_ Jo fo fo \I’:p(r)'q’nrpr(r)TZZUnAnnrAppr,
ém(p) and ¢ (p) are the even and odd eigenfunctions of
the two-dimensional Laplace operator in the cross section of Lt dxdydz
. : o p W o(1) Wy (1) —5—=0. (2.33
the flow with no-slip boundary conditionsg,(—p)= 0JoJo L
+ ¢ (p). / _ _ _
@;(p)=D;(p) +i®{(p) are PM basis functions, Eq. Herev,=2"%"is the dimensionless part of the total volume
(A2). o _ per one mode in thath cell.
~ Vem(p) andV; are thePM velocity in the coordinate and  Equations(2.2) and(2.3) give the Parseval identity for the
j representations, related by Eg.3). density of the turbulent energy in the form
U,; is the velocity of turbulent fluctuation of the scale
proportional to 2" in thej zone[(nj) eddies; u;=u;; . L (L (Llu(r,h2dxdydz &
&= f J f =2 &), (243
0JoJo 2 L A=1
Il. STATISTICAL MULTIZONE SHELL MODEL
FOR TURBULENT FLUCTUATIONS 2
[Unp(D)]
A. From the NSE to shell models of homogeneous turbulence gn(t):UanC 2 (2.4b

In this subsection we present a rederivation of the stan-

dard shell model of space homogeneous turbulence in a waphis equation supports our interpretation Wf,(t) as the
that aII_ows us to g_eneralize it in Sec. IIB for the case ofyelocity difference across the separatlopin the (np) cell.
space inhomogeneity. We will refer to these fluctuations as thep) eddy.
A particular choice of the cell function®,(r) is not
important for us here. Notice only that for largehe basic
Consider for simplicity an incompressible turbulent veloc-cell functions become scale invariant and may be obtained
ity u(r,t) in a periodic box of sizé. XL X L. Instead of the by dilatations of one(or a few n independent function
r or k representation, we introduce here aefl basis W, (x). In this limit the cell basis becomes the wavelet one
W,,(r), which is quite similar to wavelet baséer an easy-  with W.(x) as the so-called? wavelet[18]. An explicit
to-read, introductory text about the theory of wavelets, seegexample of a divergence-free three-dimensional ve@®or
e.g.,[18]). Similar to the wavelet bases, the cell bases reflectvavelet function and is given if6].
both spatial scales of turbulent structufes in thek repre- The cell functionsW,,,(r) form a complete orthonormal
sentation and their position in the physical spa@ss in ther basis, and therefore one can derive thect equation of
representationbut account for the actual boundary condi- motionfor U,,(t) by the Galerkin projection of the NSE:

1. “Cell basis,” wavelets, and {np) eddies”
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dup(t
2H
* /E// /2// /2 ng”éi:pp/p/lugl,pl(t)Ug:/’p”(t)’ 4’\
n'n" pp’ oo ==x -
(2.9 ] = px

whereo,o’,0" =+ are sign indices, and we accept the con-
ventionU,,=U,, and U,fpz U7, - The explicit forms of the
damping parameteis and amplituded depend on the basis;
see, e.g.[6].

X

FIG. 1. Geometry of the channel and the plane Couette flow
between two parallel planes separated by i the cross-stream
direction y. In the simple channel flow the pressure gradient is
applied in the “streamwise” directior and the mean velocity(y)

. . . . e is oriented also along. In the plane Couette flow the lower wall
Consider briefly the physical simplifications that allow (y=0) is moving inz (span-wisg direction with some velocity/o,
one to reduce the NSE to the shell model of homogeneougpile the upper wall y=2H) is moving in the opposite direction.

turbulence. Unlike the similar discussion [i6], we empha- In this case\7(y) hasz-projection. For both flowsand their hybrid-

§|Zed the assumptlon of spape homerne'ty and th? pOSSIb| 7ation) the three-dimensional velocity fluctuations are space-
ity of relaxing this assumption in order to generalize She”homogeneous in the—z plane.

models for the space inhomogeneous case.

The standard shell models of homogeneous turbulenceng correlation functions ok, can be evaluated with some
follow from the exact Eq(2.5) with the following simplify-  reasonable statistical assumptiofisr instance, with some
ing assumption of a statistical nature: closure procedure, like the direct interaction approximation;
see, e.g9.[6]).

Under assumptioi2.6), Eq. (2.4b gives the usual equa-
tion for the density of the total energy of thth scale:
E,(t)=1/2un(t)|?. Different shell models correspond to
various further simplifications of the nonlinear tef2.79).
HereA,, are time independent, random amplitudes, and théor example, in the Sabra shell moga,
overbar denotes averaging over yet unknown statistics of . .

Anp, which is generated by the NS@.5). The dynamical Nn=i[arn+1Un s 1Uns 2+ BKQUE_1Un 1~ CKp-1Un—2Un—1],
content ofu,(t) is the “typical” (in the statistical senéime (2.8a
dependence of allnp) eddies; in particular|u,|9) is sup-

posed to have the same scaling exponents asgtbeler (2.8
velocity structure functions in NSE turbulence; see, ¢4.,

2. Basic assumptions of the standard shell models

Unp(t)=Un(t)Anp, (2.6a

Ap=0, [Ayl>=1. (2.6b

kpx2", a+b+c=0.

The physical arguments behind Eg.6) may be based on

the fact that in homogeneous turbulence all velocitigs(t)
with different p have the same statistics. Equati¢2.6)

Notice that the scale indexin Egs.(2.7) and(2.8) for shell
models becomes thghell index

therefore neglects only the difference between the actua- Piecewise homogeneity approximation and multizone shell

time realizations ohp velocitiesU,(t) of the same scale

(the same scale indax, but occupying different cellgdif-

model for turbulent fluctuations

The turbulent fluctuations in wall-bounded flows are not

ferent position inde»p). The ensemble of the time realiza- space homogeneous due to the spatial dependence of the

tions is replaced by the time independent ensembld, gt
With the assumptiori2.6), Eq. (2.5 yields

du,(t)
gt~ YnUn(D+Nq, (2.79
7’“:% L ppr AnpAnprs (2.70
No= 3 Sl (Oun, (@70
= S, iy, (278

mean velocity profile, which, in its turn, is also affected by
the turbulent fluctuations. Due to the inhomogeneity of tur-
bulence, the shell model approach discussed in Sec. Il A has
to be revised, which is the subject of this subsection. For
concreteness we discuss the planar geometry of channel flow
of width 2H in the cross-stream direction(see Fig. 1 In
further analysis we consider only the lower half of the chan-
nel, 0<y<H, having in mind that the flow in the second
half of the channelH<y<2H, is statistically identical to
that in the first one.

Clearly, the core of the flousay, forH/2<y<H) may be
approximately viewed as homogeneous. Let us call this re-
gion the 1 zone. The next regidtV4<y<<H/2, in which the
mean velocity profileV(y) begins to decrease towards the
wall, we call the 2 zone. Notice that the width of the 2 zone,
H,=H/4, is one-half of the 1-zone widtlj,=H/2. There-
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y shell 1 : hell2 @ 3 4.5, dug;i(t)
Hl she ! she . 1 415, nitt)
zone 1 E ' :8;: i dt __’Ynunj(t)+./\/nj+Aanj , (2.11
: 210! — .
! 0 in which we have added by hand the production tevm
i :8}: describing the energy pumping to the turbulent system. This
EOH term will be clarified in the following section by E¢3.23.
________________________ 0! - The nonlinear termV;; in Eq. (2.11) describes the total
zone 2 8} energy balance for theth shell in thej zone. There are two
0L distinct geometriesj<n and j=n. In the latter case it is
_____ 7 :Oui H4 enough to describe the energy balance jfern, since all
zone 3 58:: Upj=Upy fOr j>n.
[zoned a4 B All eddies with j<n are fully placed in the same zone
Olmsmmssmmm e e (e.g., the eddies of shelis=2, 3, and 4, which belong to the

first zone; see Fig.)2 Therefore in this case we can use for
Npj(t) a standard shell model expression féf, in which

o 'TllG. i lz;)neti, Shﬁns' alnd triadtinteF:act_ions "; Ithe lmu![@izon?unjzun_ In this paper we adopt the Sabra version ofXhe
shell moael 1or € channel geometry. eglions of localization Oterm, generalizing EC(28)

(np) eddies are shown schematically as ellipses with corresponding
numbers inside. The near-wa!l gddies havej. They also occupy Naj(=Np;(t) for j<n, (2.123
all j zones toward the wall, with>n.
) . . Nnj:i[aKn+1U:+1,jUn+2,j+bKnU:—1,jUn+1,j

fore, with approximately the same accuracy we can consider
the statistics of turbulence in the 2 zone as homogeneous, but —Ckp-1Un—2jUn-1;]- (2.12h
different from that in the 1 zone. ) ) )

Similarly, one expects that the mean velocity difference The energy balance of the near-wall eddies-() is quite
across each succeedifigzone of widthH;=H/2 will be different. As one sees in Fig. ®n the example of the eddy

more or less the same. This is the motivation to defing the In the first shell, the near-wall eddies participate in triad
zone in a scale invariant manner, asiB<y<2-(-DH interactions of three typedriad 1 involves one near-wall

and to approximate the turbulence inside each such zone &§dy and two bulk eddiefshe (uys-U,1-Usy) triad of the first
homogeneous. zone in the above exampgleFor this interaction we will use

The approximation of the piecewise homogeneity allowsEd- (2:8) but with different parameters:a,, b,, andc;.
one to use the shell-model reduction, E26), inside each Triad 2involves two near-wall eddies and one bulk edithe

zone, similarly to that in the whole space for homogeneou$Uiz U2z Uso) triad of the second zone in Fig].2Here we
turbulence: will use Eq.(2.8) with the parametera,, b,, andc,. Triad

3 involves three near-wall eddi¢the (U,3Uy3-Uss) triad of
Unp(t)zunj(t)Anpj, 1<j=n, (2.98  the third zone in the above examplélere we will again use
Eq. (2.8 with the parameterag, bs, andcs;.
— N The relationships between the four set of interaction pa-

Anp=0, [Agl*=1, rameters(a,b,g and @,,b,,c,), p=1,2,3] may be found
from (i) the requirement of the conservation of energy and
Upj=Upn, >N (2.9 (ii) the “correspondence principle:” For the space homoge-

neous caseu,; is independent of the zone indgxthe mul-

tizone model must coincide with the usual shell model for

homogeneous turbulené® our case, with the Sabra modlel
The above two requirements give

Herep; belong to thg zone, in the sense that theyy) cells
are inside thg zone. We introduced in E§2.99 the velocity
of (nj) eddies, in thenth shell in thej zone. Equatior{2.9b
reflects the fact that the near-watlj) eddies with zone index

. ) ) o X a;=al2, a,=az=al4,
j>n belong simultaneously to thjezone withj =n (see Fig. ! 2

2). (I)herefore in our model alu,;(t) with j>n are just b,=b, b,=bs=b/2,
Unn(t).
With Egs.(2.9) one gets from Eqg2.4b C=C,=Cp=Cs. 2.13
“ H. upi(1)]2 These equations may be interpreted as follows. In the tri-
&)=, W’gnj(t), Enj(D)= ”12 , (210  ads 1 only one-half of the largest eddy belongs to the same

=1 zone as two smaller ones. This gives=a/2. Two smaller

eddies in triad 1 fully belong to their zone. This corresponds

whereé&,; is the energy density of theth shell in thej zone  to b;=b andc;=c. In the triads 2 only one-quarter of the

of width Hj=H/2. largest eddy belongs to the same zone as two smaller ones.
Using Egs.(2.9 and(2.5), one gets the equation of mo- Thereforea,=a/4. In this triad only one-half of the middle

tion of the multizone shell model for turbulent fluctuations: eddy belongs to the same zone as the smallest one. This
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corresponds td,=b/2. The smallest eddy in the triad be- linear momentum vanishe®=0. Due to Galilean invari-
longs fully to its own zone, and we tak=c. In triads 3  ance the space homogeneous velocity does not interact with
only one-quarter of the largest eddy, one-half of the middlene turbulent fluctuations. Therefore one can consider turbu-
one, and the full smallest eddy belong to the same set Qgnce in any other reference system w0 with the same
zones(zones 3,4, etc., in our exampldhis corresponds t0 et for the statistics of turbulence. Hence, the mechanical
the relationshipg;=a/4, bs=b/2, andcs=c. o momentum is not a relevant integral of motion for un-
_ The total contribution of the three types of triad interac-y), ,hqeq turbulence. This is not the case for wall-bounded
t'n?;ri;c’eéhssnf%ﬂgr\;fse}r'ty of the near-wall eddies can be SUMtyrbulence, in which the Galilean invariance is broken by the
: presence of the walls. The conservation laws for the total
1 linear momentun® (as well as for the total angular momen-
Nnn=Z[2Nn,n+ Npn+1tNpns2l (2.14  tum M) give an important constraint on the expected behav-
ior of the system. For example, in channel and pipe flows,
One can join the two equatiori@.12) and(2.14) and write  the total input of linear momentum due to the pressure gra-
dient, acting in the whole cross-sectional area of the flow,
1 must be equal to the dissipation of momentum at the walls
Noj=Npj+ Ay Z(NnvnH_NnnH Z(NH,MZ_NM) : due to viscous friction. Clearly, an analytical description of
(2.19 wall-bounded turbulence must respect the conservatidd of
andM (in the unforced, inviscid limjt
Obviously, in the homogeneous case the second term in the consider the mean velocity fiel(p) in simple flows
RHS of Eq.(2.19 vanishes and one recovers the usual shellyith translational symmetry in the streamwise directip,
model for homogeneous turbulence with,; =N, in which alsoM|IX. Herep is the radius vector in the cross
Notice that the explicit form of this equation reflects the section of the flowpl %. Examples of such flows are chan-
fact that we have accounted only for the triad interactionshel and pipe flows, planar Couette floig. 1), circular

involving the nearest shellsnt-1, n, andn+1) and the Couette flow, etc. Instead & andM, it is more convenient

partloular form of th.e. ohannel subdivision m_the zores to deal with their volume densitie® and M, defined as
=27JH. This subdivision of the cross-sectional area Onfollows,'
fe :

zones is reasonable for the scale invariant case of a turbule
boundary layer near a flat plane. The physically motivated P=P,=(%,V), (3.1
subdivision in particular flow geometries will be discussed in

the following section. In the general case Hg.14) is

changed as follows: M=M,=(R,)V), R=XXp (3.1b

©

S.

Nnj:Nnj+Anj, 2 ;I_(Nni_Nnn)v
i=n+19j where(A,B) is the scalar produdtl.11).

" Our idea is to divide the full velocity fiel® (p) into two

‘TJE,E_:J s 2.16 parts, denoted agpp(p) andV(p), such that the turbulent

partV+1(p) does not contribute t@ and M:

with an arbitrary dependence of tlidimensionlessj zone

areass; onj and an arbitrary form of the nonlinear teidy; . (%,V1)=0, (R,V7)=0, (3.2
The fact that under the sum one has the differendg; (

—N,n) guarantees the correspondence principle, while the

weightss; /o follow from th_e requirement of con_servation and to take special care only with\(p), contributing toP
of Fho to.tal energy, which in the case of an arbitrary Z0N&nd M. This division may be done in many ways; our par-
dl_v|S|on is given by a natural generalization of E.10 ticular choice will be clarified below by Eq3.3).
with H;/H replaced bys; : The description ofVpy(p,t) may be statistical or dy-
o Uy (D)2 namical. The statistical description is the straightforward
&= &), &)= — (2.1p  cell-expansion approach to shell models, based on the NSE
=1 2 for Vppm(p,t) in the cell representation, similar to E@.5).
To continue, one has to find some reasonable statistical sim-
IIl. DYNAMICAL MULTISCALE MODEL plifications, similar to Eq(2.9). However, sincé?# 0 and/or
FOR THE PM VELOCITY M=#0, now also(Vey(p,t))#0 and thereforéA,, cannot
be approximated as zero. This makes it hardly possible to
remain on the level of a statistical description and one has to
deal with a detailed, dynamical description of #kl veloc-
Unbounded turbulence may be described in a referencity Vpy(p,t) in terms of the NSE. This is the subject of the
system with a zero mean velocity. In that system the totafollowing subsections.

A. Mechanical momentaP and M and statistics
versus dynamics dilemma
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B. PM basis, properties, and interpretation The energy density associated with k! velocity is
1. Construction of the basis |V<|2
i Epm=2 S (3.50
In the framework of the MZS model, we approximate the PM = 2 :

mean velocity profile by th&M velocity Ve (p,t), which
can be projected on théncomplete complex PM basis

@ (p): 2. PM basis for the channel and pipe flows
: The particular form of thé®M functions is geometry de-
pendent. To get a feeling of the appearance of these func-
' 3.3 tions, we discuss here two important cases, channel and pipe
flows, found in Appendix A, Egs(A2), (A13), and (Al4).
where the expansion coefficiens(t) can be understood as These two examples will serve us in the rest of the paper.
PM velocities in the zone representation. Some properties of these specific bases are more general,
In order to reflect the essential physics of the problem irhowever, and will be used in the derivation and analysis of

the PM representation, we require the following generalthe momentum equation for;(t).

Veu(pt)= Re[ ]2:‘,1 Vi(t)®;(p)

properties of the basis functions. In Fig. 3 we plotd/ ,(y) and®] (y) for the channel as it
(1) The basis functionsP;(y) are asymptotically(for | follows from Eg. (A2) with Eq. (A13). The functions
—o0) scale invariant: CIDJ-"X(y) are symmetric with respect to the centerline of the
channely=H, whereasb{ ,(y) are antisymmetric. For large
;. 1(p)~P;(Ap), 343 @/ ,(y) and®/ (y) coincide in the lower half of the chan-

with a scaling parametem>1. In this paper we adopt a N€lY<H and have an opposite sign fgr>H. As is clear
standard valua = 2. from (c) and(d) in the near-wall y<H) region®{ ,(y) and
(2) The basis function;(y) form an orthogonal set and 7 (y) already almost coincide fgr=5.

thus represent independent contributions to the kinetic en- For channel flow one can find from Eq#2) and(A13)
ergy of the flow: an explicit asymptotic expression fdr{ ,(y) and®j (y) in

the limit j —oo (actually,j>4). Fory<H,

O] () =P (y)=®y(27’yI2H), (369
. . 2| [2¢ [ &
Here s; are dimensionlesgone areasthat depend on the q;un(g)E; Si — —Sj —| (3.6b

explicit form of the basis.
(3) In spite of its incompleteness, thHeM basisexactly
represents the relevant linear integrals of motion, namel

linear P and angularM mechanical momenta, defined by . A .
tions® ,, is the same for any flow geometry, if one expresses

Egs.(3.2). ; .
(4) In addition to these three crucial properties, we alsothem as functions of the distance from the wall. For example,

require that different basic functior;(p) belong to differ- in the pipe one obtains E3.68, wherey is the distance

ent subspaces of the Laplace operator. In this case the viéj-"FT Ith?:_walll,y=Rh—p,tﬁnd H”'S the r]?t?]'us of tk:edp]:pehlt.
cous term in the zone representation will have the simplesg) -In '92' + We show the collapse of Ihe rescaied functions
j(2H¢/7=2Y) for j=5, ... ,8 with the universal function

possible diagonal form. . o
In Appendix A we show that the above requirements arePur(€) for the channela) and pipe{(b), H=R] flows.

sufficient to determine the uniqueM basis for any given
flow geometry, Eq(A2), and analyze the properties of such
bases in detail. Here we list expressions for the conserved a. Characteristic length of a flow.The cross section of
quantities of the NS equation in tfRM basis that are impor-  the flow can be characterized by two global parameters, the
tant for the following discussion. The densities of the linearcross-sectioned are® and the length of its perimete?, .

P and angularM mechanical momenta of the flow are given one can organize from these two objects many combinations

))Nhere Sik) is the sine integral function.
" It is expected that the asymptotic form of the basic func-

3. Geometry of the j zones in the channel and pipe flows

exactlyas with the dimensions of length, (8)=P, (S, /P?)?, with
arbitrary 8. For discussion of turbulent flows under an exter-
P=Z sjVj’(t), (3.5a nal pressure gradient, the particular choge 1,
]
L=L(1)=S,/P,, (3.7
M=$smwmn (3.5b

is physically important. The reason is that the total external
accelerating force, applied on a unit length of the flgidthe
HereR; is defined by Eq(A7), and, with a high accuracy, streamwise directionis proportional tcS, :

may be approximated as the distance from the center of the

flow to the wall, i.e.,Rj~H for the channel. Fam VPSS, ,
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FIG. 3. First functionsP;(&H) describing the mean flow with nonzero mechanical momenta in a channel of witlthin2the whole
channel 6<¢<2. (a) and(b) The PM functionsd)j"x(gH) (@ andCI)Jf"Z(fH) (b) with j=1,2,3,4 for the whole channdk) and(d) The PM
functions withj=5,6,7,8 in the near-wall regiotic) ®; ,(¢H). (d) @7 (&H).

while the total friction force is proportional 8, (under the dV,(y) Vp
simplifying assumption of homogeneity along the perim- d =L
Y l,—o Vo
eten: y=0
dV,(y) In terms of the friction velocityJ ;, Eq. (1.7), and the fric-
Fic= Vopid— . tion Reynolds numbeRe Eg. (1.8), this gives the famous
Yo ly=o constraint for wall-bounded flows
The stationarity conditiorF,.=Fy;. allows one to relate dV,(y) U
[dV,(y)/dy]y -, to the characteristic lengthdefined by Eq. . =Re—. (3.8
. dy | _ L
(3.7). y=0
% T T T T T T T (é) 3;1 T T T T T T T (b)
s 04 1 5 044 ]
g I
2} [%})
-S 0.24 B .S 0.2 _
& g
£ oo M P £ o0 M i
. , N2 | = A\
3 3
m T T T T T T ) E T T T T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Normalized coordinate y/Lj Normalized coordinate y/L/.

FIG. 4. Asymptotic universality of thBM basis functions(a) Collapse of the rescaled real part of the basis functibj(@H &l w22y for

n=5,...,8 with theuniversal asymptotic functio® (&) for channel flow. The linegfrom right to lef) correspond to those in Fig(aS.
The leftmost solid line denoted,(£). (b) The same for pipe flowd =R.

046308-9



L'VOV, POMYALOV, AND TIBERKEVICH PHYSICAL REVIEW E 68, 046308 (2003

TABLE |. Parameters of th®M basis for the planar and pipe =s/2. Clearly, forj>3 these two parameters practically co-
geometries. incide.

Planar Pipe 4. Interpretation of the PM velocities

S:

. 520 RH wvilvy s 528 RI/R vl The PM expansions of the linear profilg¢see Eq.(A9)],

gives a simple interpretation of the velocitiaﬁ’(t) and

—

0.002 0.21 099 0.83 0.003 041 1.00 0.82
0.001 0.21 1.00 0.82 0.002 041 100 0.82
2/ar? 1 8/m? 472 1 8/m?

L 081l 162 050 648 0692 138 051  2.77 V/(t) as thek andé projections ofVpy(p,t) at some posi-
2 0122 049 077 196 0185 074 103 148 Jo' o Zonep 2 PMLP: P
3 0038 030 090 122 0068 054 1.00 1.09 J Py
4 0015 025 095 099 0029 047 1.00 0.94 , s
V (H)eV(p ,t), Vipt=KX-V 1), (3.11
5 0007 022 098 089 0014 044 1.00 0.87 i(OeVxlpp). Vlpt) Pulp), (3113
8
o]

&=%X plp. (3.119

This point will be illustrated below in Fig. 14 by direct com-

. . . ... parison ofV; andV(p) in appropriate coordinates.
In all the mentioned global relationships the charactenstl(P J (p) pprop

lengthL plays an important role.

Notice that for the channel of widthi2 the lengthl is the C. Simple momentum equation forV;

distance from the centerline to a wall=H. For the pipe of Consider the NSE fo¥ py(p,t) in the form
radiusR the lengthL =R/2, which is twice smaller than the Vou(p.t)
distance from the center to the wall. Neulpt) o B
b. Zones in the channel and pipdn Table | we present ot voAVemtVPX=(Vew: V)Vey—(U-V)u.

parameters; for the channel and pipe geometries, which are (3.12
given by Eqgs(A4), (A13h), and(Al4c).

Using s; and L we introduce thecharacteristic width of Here vg is the kinematic viscosity, anip=—dp/dx>0 is
the j zone the pressure gradient in the streamwise direckiomhe non-

linear term ¥ p\y- V)Vpy describes the self-nonlinearity in
Li=slL. (3.9  the PM subsystem and the last terfu- V)u is responsible
for the effect of the Reynolds stress on ®ié velocity. Here

The idea behind this definition is that for the narrow near-the overbar represents ensemble averaging in the sense of

wall zonesL | is exactly their geometrical width |, i.e., the ~ Ed.(2.9. The nonlinear cross term proportionala (which
distance between thezone boundaries. has zero mearis neglected. .
Assuming that\; is much smaller than the local curvature _ The goalis to get the equation of motion for the complex
of the boundary, we evaluate the area of a very najreene ~ PM velocitiesV(t):
asS;=A;jP, . On the other hand, this areassS, . There-
V,;
fore, d—tj=(dampingj+(pressurg+(se|f-interactior)|j
Ai=sS /P, =siL=L; for j>1.
oL J ] +(Reynolds stregs, (3.13
Obviously, for planar geometry; =L ; for anyj. To find the
value ofj at which the zones become flat, consider the pip
geometry withA;=r;—r;_;, wherer; is the radius of the

by projecting the NSH3.12 on the PM basis, using Egs.
e(A8) and(Al12) in the form

circle occupied by the firgtzones: V(1) =2(D; Ve (D] @), (3.14
j 1/2 . . ) ) . .
_ . Later in this section we derive the following equations for
r=R 21 Si (Pipe). 310 ihe terms in the RHS of Eq3.13:
Table Il compares\;/R given by this equation with_; /R (damping;=—T';Vj, (3.153
TABLE Il. Geometrical and characteristic widtd§ andL; of j (pressurg;=Vp, (3.15h
zone in pipe geometry.
(self-interaction; =0, (3.159
i 1 2 3 4 5 6
Aj/R 083 0105 00356 00148 00071 0.0035 (Reynolds stregg=W;, (3159

L;/R 035 0.093 0.0340 0.0145 0.0070 0.0035 2 2
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Herel; is given by Eq(3.18 and the dimensionless param- @, , Eq. (A2): the functions withdifferent j originate from

eterd characterize the strength of the interactions. different, and thusrthogonaleigenfunctions of the Laplace
Collecting Egs.(3.13, and (3.19, one finally gets the operator.

resulting momentum equation:

2. The pressure term

Vi(t . :

% =— szvn—i—Vp—i—Wj , (3.16 Equations(3.12 and(3.14) dictate

=2Vp(®; ,X)/(D; ,D;).

wherev; is the effective viscosity, given for the channel and (pressurg; P(P; 2/ (Dy, By)
pipe flows in Table I, and; is given by Eq.(3.19. This
equation together with Eq2.11) will be analytically and

numerically analyzed in the following Secs. IV and V.

SubstitutingX from Eq. (A9a) into above expression, one
gets Eq.(3.15b for any flow geometry. This means that the

: ; : L ressure gradient uniform ip acts equally on all compo-
Readers not interested in the details of the derivation OE 9 P quaty P

) . : “hentsV' (t). This remarkable result could also be obtained
- J
Egs. (3.19 can skip the rest of this section and proceed di from the interpretation oV,, Sec. IlIB4. Indeed, if we
rectly to Sec. IV. !

leave in the RHS of Eq.3.12 only the pressure term, we get
the p independenY,(p,t) =Vpt, i.e., a homogeneous veloc-

1. The damping term . . . L
ping ity profile. This means that/j’ (t) is independent of.

Projecting the NSE3.12 on the real and imaginary parts
of the PM basis Eq.(A2), and accounting only for the vis- 3. The self-interaction term

cous term proportional teg, one gets . . . . .
prop 0 ¢ In various simple flows the self-interaction term in Eg.

dv’ dv’ (3.12 is identically equal to zero due to geometrical con-
d_tJ =-TIjv/, d_tj =-Ijvj, straints. It is so for channel and planar Couette flows, where
. . . , " d d
with, generally speaking, differedt; andI' : (V-V)V= Vx5+Vz5 V(y)=0.
O AD] O ADY
INE ,,O(J,’—,J), "= — ,,O(J”’—”J)_ Here we skipped for brevity the subscripM. The same is
(@, D)) (@}, ®)) true for pipe geometry, where
(3.17
o Do 9 Vg4 9
However, in pipe flow they are equdl;j=I'j, since the (V-V)V= VX&_X+7£ V(p)=0.

functions ¢, and ¢, are the same; see E(A14). In chan-
ne{:l floxv these functions, Equef)’ are dlﬁgrent aqd her)ce In the present paper we consider only flows with zero self-
I'j#T']. Nevertheless, for largg the basis functionsb; interaction, Eq/(3.150.

—®f andl'{ —T'j. Therefore it would be a reasonable sim-

plification to neglect thegpossiblg difference betweeri“j’ 4. Effect of the Reynolds stress

andI'{ and to write Eq(3.153 with the same damping term

Ty, thc,h 1S betwegrfj andI'y. For example’ in channel (3.13 should be a quadratic function of the turbulent veloci-
flow, Vj is responsible for the mean velocity profig(y)  fies Un; and should scale ag=1/(2L;)=2. This term de-
and thus “more important” thavj'. In that case we will  g¢ripes two physical processes, namélythe exchange of
takel';=T" . In planar Couette flow, the mean velocity pro- |inear and angular momenta between different zones(iand
file is given byV,(y), which is connected %], and thus  together with its counterpart; in the equation fou,;, the
one had better takEj=Fj’. energy exchange betwe&h andu,; subsystems.

It is customary to represent the damping term via an ef- In the spirit of the shell models of turbulence, we consider
fective viscosityr; and an effective wave vectas, defined  here the form of the Reynolds stress term that accounts for

In the PM representation the Reynolds stress term in Eq.

via the characteristic width of thezonelL; : the momentum exchange only between negreshes(j and
j£1) and preserves the relevant integrals of motion, the en-
Ij=v; sz, v~ Vg, (3.18 ergy, and the momenta. Notice that in turbulent channel and

pipe flows with (M)=0, the conservation of is much

1 more important that the conservation 8f. Therefore we
ki=5+ Li=siL. (319  can simplify the possible structure of the intersystem inter-

action termsW; andw; by using for M its simplified ver-

The parameterk andL; were defined and discussed in Sec.Sion, in which allR; are assu_med. to be the sanfig—R.,
Il B3b. The values ofs; and »; for channel and pipe flows = Cconst, and thus can be omitted:
are presented in Table I.

Notice that the damping term in E¢B.153 is diagonal in =S sv’ uasianaular moment 3.2
j- This is a consequence of our definition of ikl functions 2 Vi=(d g Um (3.29
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It is easily justified by noting that fo>3 thej zone contri- vp=1, (4.19

butions toM and M are almost the sameee Table | for _ _
R;). In the following we will drop the tilde onv, and write ~ Where the timer and velocityU ; are constructed from the

the quasiangular momentum simply Ad. Having in mind ~ “outer” characteristics of the flowyp andL:
the conservation of the “complex momentum”

r=yL/Vp, U,=yVpL. 4.2
55P+iM:E SV, In the rest of the paper we omit the tildes on the dimension-

J . . . .
less variables. The dimensionless MZS equations take on the

we suggest the following form of the Reynolds stress termform

W;:
dv;
1 W——FJ—V]+ij+WJ—, Vp;=Vp=1, (4.39
(Reynolds stregs=W,;=—(p;_1—p)), (3.21)

Si
wherep; is the momentum flux from thgto the ( + 1) zone. du”l — Ui+ N AW (4.3
Indeed, this form provides the conservation®in the in- dt e
viscid, unforced limit:

ar i=1,2,...00, n=j,j+1,...

H:; Sjo:; (pj—1—p))=0.

Here the shell variables,; are the velocities of statistically
identical(nj) eddies of characteristic scadgthat belong to a
For the momentum fluxp; we also select the simplest j zone of widths; . Clearly, in Egs.(4.3 n=j. The PM
form, assuming that only the near-wall turbulent eddies OlvariablesV/(t) describe the velocities of coherent near-wall
the same scalaj;j=u; (i.e., uy; with n=j) give a nonzero structures in thg zone. In our notation the near-wall turbu-
momentum transfer: lent (nj) eddies haven=j. These eddies also occupy #ll
d zones withj=n. Therefore, in our approach

2
i==—uf. (3.22
T Upj=Upn=U, for j=n.

Equations(3.21) and (3.22) give us the simple EA3.15d  1pe terms on the RHS of the dimensionless MZS equations

for W;. , - (4.3 are as follows:
The production ternw; , describing the energy pumping
into thej zone of the turbulent subsystem Eg.11), is then _
) . ; ; Gj , On 5 1
uniquely determined by the requirement of conservation of =52k Yn=paKm Ki=5o, (4.43
the total energy of the system: Re Re 2s;
W, =dk;(u? ,—u?), (4.4b
w; = 2oL 5—(V;=Vj )uf. (3.23 IR
d
=——(V;=V;, )u* = » 4.4
IV. CONSERVATION LAWS AND SYMMETRIES i 20j( VU Ej S. (449
IN THE MZS MODEL
A. Resulting di ionl MZS ti
esu IT‘Ig Imensioniess equations Nn] NnJ+AnJ 2 (Nn] nj): (4-4@
For the convenience of the reader we present here the full i'>i i
set of MZS equations which will be the subject of analytical
and numerical studies. As the first step, we nondimensional- Npj=i(aKn1UpsqjUnso)jbraUl g Unsy;
ize the MZS equations, expressing timeand velocities
Vj,Upj in units of randU ,: ~CKn-1Un-2,Un-1;)- (4.40
~ t Here
t=- (4.13
T
~ a+b+c=0, 2 §;=
~ o~ VJ(Tt) =1
Vj(t)= T (4.1b
T Equationg4.4) contain only one physical parameter, the fric-
tion Reynolds number
(1) = 27 (4.10
nj UT y . RGZLUT/VO, (45)
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and a set of geometry dependent, dimensionless fa@pys
g, ands;. For channel and pipe flows the facto@
=vj/vy ands; are given in Table 1. For simplicity in this
paper we takg,=G,,.

B. Conservation laws and fluxes

In the invisid ;= y,=0), unforced ¥ p;=0) limit Eq.
(4.3) conserves energ¥, linear momentuniP, and (quas)
angular momenturoM:

1< ”
E=52 S;(IVJ-|2+E |unj|2)y (4.63
=1 n=1
P=2 s\V], (4.6b)
s
M=2, sV]. (4.60
]=1

In the general case, with nonzelfg, y;, andV p; the direct
calculation ofd&/dt, dP/dt, anddM/dt with the help of
Eq. (4.3) gives

a¢ . _
qf T (4.79
dapr
E=P+—P_, (4.7
dam
—aY-an+—wn7. (4.709

Heree™, p*, andm™, aretotal influxes of the respective
integrals of motiong, P, and M, ande ™, p~, andm™, are
their total rates of dissipations. As for Eq&4.6) these ob-
jects can be representedsaaveighted sumg js;(---) of the
respective densities gfartial influxes ;" , p;", andm;’)
andpatrtial rates of dissipation in thpzone:

8+:j21 SijJr i S;FZijVJ—,:Vj, , (483
P+:§l sip . b =Vp=1, (4.8b
m*=2, sm’, w =0, (4.80

o]

p =2 sp . b =TV, (4.9

=1
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m =2 sm_, m =T}V, (4.99
=1

The total influx of energy is exactly equal to the total linear
momentum of the flow(due to our normalizatio’Vp=1)
and the total influx of the linear momentum equals unity:

e"=Vp2, §V/=VpP="P, (4.10a
=1

0

p*szzl s=Vp=1. (4.10b

For channel and pipe flows, the influx of angular momentum
m*=0. In planar Couette flonp* =0 andm™ #0.

Notice that the main part of the influx of momentum is
always flowing into the first few zones, whesghave con-
siderable values. For example, in the chanre1% of the
totalp* flows into the first zong¢occupyings,~0.81 part of
the cross-sectional area; see Tabhle9B% into the first two
zones, and only about 1% to the fifth and all higher zones. As
we show below,VJ-’ slightly decay withj; hence the influx of
energy is even more confined to the first zones.

For very high Reynolds numbers the dissipation of the
conserved quantities occurs at large(or n), ~log,Re
Therefore for logRe>1 there exists an inertial intervéden-
erally speaking, different for the different quantiies
Clearly, in the stationary case the influx of some conserved
guantity has to be equal to its flin the shell space or via
zones. For the energy, it is useful to analyze the flux in the
shell space:

et=g,=c =P, &,=>, €njs (4.19
=1

wheree,,; is usual for shell modelin thej zong expression
of the flux of energy from thath to the (i+1)th shell.

The flux of the linear momenturp; from thej to (j
+1) zone is given by Eq.3.22), which in the dimensionless
form readsp; =duj2/2. Therefore, in the stationary case, for
in the inertial interval,

pj=duf/2=pT=p =1 (4.12

To get the expression for the value gfvalid for anyj (not
only in the inertial interval we multiply Eq.(4.3a by thej
zone areas;, and sum up from 1 tg. This gives the useful
equation

j
pj=duj2/2=z s(1-T;V,) for anyj, (4.13
i=1

which allows us to express the turbulent veloadity=uj; ,
generating the turbulent energy cascade inj ttene, viaPM
velocities.
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C. Galilean invariance of the model

The Galilean transformation to the reference system,

moving with some velocity, in the streamwise directiok
changes

V(p,t)=V(p,t) +XUq.
G
According to Eqs(A9a) and (3.14), it leads to the transfor-

mation:

Vj(t)=V;(t)+ U. (4.14
G

Clearly, the termw;, Eq. (4.40, describing the effect of the

mean velocity on the turbulent subsystem, is Galilean invari-

ant:

(4.195

—— (V.—V. * .
Wj—zaj(vl Vit)y; ?WJ.

In other words, the uniform velocity profileV(p)=X

X const does not affect the statistics of turbulence. This im-
portant invariance of the MZS equations guarantees that f

Re—« the mean velocity profile in the core of the flow
becomes uniform and the statistics of turbulence becom
space homogeneous, as expected.

D. Asymptotic scale invariance and equations
for the turbulent boundary layer near a flat plane

Consider the MZS equatiof#.3) at very largeRein the
near-wall region,n,j>j,>1, in which the dimensionless
parameters in Eq(4.4) can already be replaced by their
asymptotic values:

GI:G’ gjﬁg,

Sj$27js, (TJZZSJ (416)

This is definitely so for channel and pipe flows, say, jior
=3; see Table I. For largethe zone width is much smaller

than the local curvature radius of the wall and the discussed

situation corresponds to the case otuwabulent boundary
layer (TBL) near a flat plane.

For j=j, the dimensionless flux of linear momentum
from thej to (j+1) zone,p;, is very close to 1 and much
larger than the direct influx into trjezone,sjpj+ =s;<1 from

the external pressure gradient. Therefore in this regime one

can neglect in the RHS of E¢4.339 Vp=1 with respect to
W; and simplify Eq.(4.3) to the scale invariant form

dV]' GKJZ 2 2
W:—ﬁVj"'dKj(Uj_l_uj)l (4173
dunj gKﬁ Anj *
dt = Re Un TNt 5| di(Vi=Vieu

+ 2 2i-i'(Nn,—,—Nnj)} (4.17h

i">j
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kj=2lk, k=12, n=j=j,, (4.170

pr=duf _2=duf _,/2=1, (4.179
whereN,,; already has the scale invariant form H¢.49.
The “TBL boundary condition” atj=j, , Eq.(4.170, pro-
vides the influx of energy and mechanical momentum into
the TBL, Eq.(4.17. In the initial Eq.(4.3) this role is played
by the external pressure gradiénp=1.

Equations (4.17) have additional[with respect to Eq.
(4.3)] rescaling symmetry, namely, they remain unchanged
under the transformation
V;—V=V

j+jo’
Unj=Unj=Un+jg.j+ig
t—t=t/2o,

Re—Re=Re?20o, (4.18

QWhich correspondsin ther space to the simultaneous res-

caling of the outer scalk and the pressure gradie¥ip in a

e\f/ay that leaves the value of the wall shear stress unchanged,

VpL=const. This symmetry of the equations means that the
MZS model describes the asymptotic universality of the
near-wall turbulence foRe—«, and that the only relevant
parameter in this regime is the total influx of the momentum
p", which is fixed by the boundary conditiol(4.179.

In studies of the near-wall turbulence, it is customary to
normalize the time and velocity units by the “inner” scales
instead of the “outer” ones; namely, we should use e
cous length scaled=v,/U_=L/Re instead of the outer
scaleL, and the corresponding time scatg=6/U .= 7/Re
instead ofr. As one can see, this rescaling corresponds to the
choice jy=log, Rein the transformatior(4.18. In the new
units, the MZS equations have the same form as(Ed.7)
with Re=1:

dVJ 2 2 2

Gt - GKVitdeu,—u, (4199
dup; j
™ 9K Nyt 3 (V=

+ 2 27 (N =N |, (4.19b

i">]

where we omit tildes on the new variables. Equatich49
represent the MZS model for a TBL near a flat plane.

Unlike Egs.(4.17), in Egs.(4.19 the zone and scale in-
dicesj and n can be both positive and negative: thig,
corresponds to the velocity of the scafeand V_; to the
structures of the scales2and so on.

We can use the general formulé&3) to reconstruct the
mean velocity profiled/py(p). In this case the expression
for Vpu(p) takes on an especially simple form, since all
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functions®;(p) already have a scale invariant form. Taking ; ‘ ; 110
into account our rescaling to the “inner” units, we can write 0]
S (sl 1105 3
va(y>=Re[Z_ Vi@ (2 m?yI28) |, (420 g °
J g 067, 1100 =
> <
S B A NS
wherey is the distance to the walip (&) is given by Eq. ‘é 044 =
(3.6b), andVpy,(y) is measured in units df . 0 {0e5 S
V. SOLUTION OF THE MZS EQUATIONS 0.0 . T T 0.90
0.0 0.5 1.0 1.5 2.0
A. Laminar velocity profile and its instability Coordinate y/H
1. Comparison of the full and PM laminar profiles FIG. 5. Comparison of the exa¢solid line) and PM (dashed
The simplest solution of the MZS equatioit4.3), in line) laminar profiles for channel flow. The ratio of the two profiles
which all u,; =0, corresponds to laminar flow: is shown by the dotted line. Its values are marked on the right axis.
i :
1 Re 2. Instability of the laminar flow at Re=Reg,
—\O0= — _ . . .
Vi=Vi= T, ijcjz' (5.9 The laminar solutior(5.1) exists for allRe For largeRe

however, it becomes unstable with respect to excitation of
Using Eq.(3.3), one reconstructs the laminar profile of the turbulent near-wall eddies;. A simple analysis of the lin-
PM velocity: earized Eq.(4.3b (i.e., /\/nj:>0) shows that the instability
condition of thej eddy reads
@/ (p)

> -
GJKJ

ng(p)=; V?(Pj,(p):Re; (5.2 Y, <d(V; = V. 1)/20;. (5.5

Substituting herev; from Eq. (5.1) one gets
The laminar profile of the full velocity?(p) satisfies the

linear NSE, which in the dimensionless foi@ 1) reads ngJ-Z d 1 1 R
Re 20 ©

K2 G.qK2
AVO(p)+RXRe=0. (5.3 Gjki Gjr1Kj:1

. o which can be rewritten as the condition flee
According to Eq(A11) the PM velocity is understood as the

PM projection of the full velocity:Ppy{V(p)}=Veu(p). 3 [T 9iGjGj+1
Therefore, we expect that the lamir@M profile (5.2), sat- Re>Rg=x; S, d(G . 1-G k2K, ;) (5.6
isfies the equation, similar to E¢.3), ) : A

It is clear thaIRqoch/z; therefore, usually the first unstable

Pom{AVRy(p)}+XRe=0. (5.4  zone is the first ong,= 1.
_ o _ _ We want to stress that E¢6.6) gives a correct instability
The proof of this equation is given in Appendix B. threshold only for thdirst unstable zone:
In the casePpyA=APpy Egs.(5.3) and (5.4) coincide,
becausePpyVpu=Vpey. If so, the functionsVo(p) and Re.—Re = (32 719:16:1G2
o P . . &r=Re =« 2 2 (5.7
Veu(p) have to coincide due to uniqueness of the solutions $1d(Go—Gyk7/k3)

of Eq. (5.3 with zero boundary conditions. However, due to
incompleteness of thBM basis,Ppy A # APpy, and hence
the profilesV°(p) and VgM(p) are expected to differ. In
other words, Eq(5.2) cannot reconstruaxactlythe laminar
profile VO(p). This is the price to pay for the incompleteness
of the PM basis. Nevertheless tiM basis is “full enough”

ﬁ]’eg'r']"\‘;"elgiﬁ rercgfﬁztwi‘t’ﬂonoﬂ :qure?chyi(;a!yﬁrg?sdsé?r!gn-wnl show later that the real instability threshold for ti
y P 9 Y- zone is proportional tdRgx«;, i.e., is much smaller than

stration of this fact we compare in Fig. 5 the exact and the[he “laminar” result (5.6)
PM laminar profiles for channel flow, which differ only by a e
few percent. This small loss of accuracy is insignificant with

respect to a dramatic simplification of the calculation scheme
for V(p,t): for large Rethe mean velocity field if°PM rep-

The excitation of turbulence in, say, the first zone will lead to
a significant momentum flux from the first to the second
zone. As a result, the mean veloci¥s will increase, the
second zone velocity gradieWt— V3 will increase too, and
the instability condition fou, will be therefore satisfied for
smaller Reynolds numbers than predicted by £&g6). We

B. Wall-bounded flows in the approximation of near-wall
eddies(a=b=c=0)

resentation habl~In Resignificant coefficienty;, while in In Sec. IV A we found the laminar solution of the MZS
the corresponding complete cell basis one has to account fequations(4.3) with u,;=0 and showed that this solution
~Re>N functions. becomes unstable &e=Re,, with respect to excitation of
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FIG. 7. Mean zone velocitieg; vs the zone indekfor different

FIG. 6. Total momentum of the flow vs. the Reynolds number
Reynolds numberRe

Re Circles denote numerical data for the channel fldw,0.046;

solid lines the analytical predictidiq. (C5)] for different number

of unstable zonem, m=1,2,...(from left to right. gion j<m are determined solely by the dissipation of turbu-
lent eddiesy; [see Eq(C2)] that go to zero aRe— (for

the near-wall velocityu;=uy;. As the next step in this sec- finite j). Thus, in the limit Re—c, AV;—0 and V;

tion we analyze a much more general solution of Ed4s3), —const. This conclusion is illustrated in Fig. 7. Clearly, for

that allows nonzero values of all near-wall velocities, large Rethe first few velocities remain unchanged, and the

=u;. Thejj eddies can be excited by a direct interactiononly effect of increasindReis the shift of the “dissipative

with the PM velocities V;. To prohibit turbulent cascades cutoff” towards the smaller scales. However, the total mo-

leading to excitation of othemj eddies(with n>j), one can mentym is determined mainly by the first few zones and thus

neglect in Eq.(4.3b the interaction termV;; (i.e., puta  remains the same. .

=b=c=0). In this case the MZS equatiof4.3) take on a This analysis shows importance of the turbulent cascade

simple form: for the experimentally observed characteristics of real flows,
i.e., infinite increase of the total flux, logarithmic profiles,

dv, etc. The stationary conditiodV;=AVS" will hold even if
d_tJ: —TjVj+1+drj(uf_ —up), (588 4ne accounts for ;turbulent céscadé, which adds game
bulent dampingyjT for turbulent near-wall eddies instead of
duy; d the usual oney; . The turbulent dampingoes not vanish in
oo iuit Z—UI_(Vj—VjH)Uj* : (5.8D  the limit Re—o. Thus, one obtaindV;=AV{'#0, and the

total momentum will infinitely increase, as it is shown in

The solution of these equations in the stationary regimesec' VC.

(d/dt=0) is presented in Appendix C. Note that this rather
complicated case can be solvadalyticallyin the MZS ap-  C. Wall-bounded flows in the turbulent viscosity approximation
proach. The main results of the analysis are as follows.

(1) The jth turbulent velocity becomes unstable at Rey-tur
nolds numbeR g «;, which is much smaller than the criti-
cal Reynolds numbe(5.6) estimated on the analysis of the
linear stability problem. For large enougtethe number of
nonzero, unstable turbulent velocitiesngR e) ~log, Re ) ]

(2) The total momentun® of the flow (i.e., total flux of In thg fully developed turbulent regime, the action of the
the fluid does not grow infinitely as Rew, but goes to interaction term\y,; on the eddyuy,; can be approximately
some finite value. In other words, neglecting the dissipatiorRccounted for in the “turbulent viscosity” approximation in
of energy in turbulent cascades, one concludes that with th@hich the energy flux from the energy containijjigeddies
given cross-sectional area of the flow and pressure gradierfoward small scales in thezone is replaced by a nonlinear
the total flux of the fluid reaches some limit in spite of the d@mping term, ensuring the same loss of their energy. For-
infinite decrease of the kinematic viscosity. The numericamally, this can be done by replacing the nonlinear tein
and analytical calculations for the channel geometry, showt the full MZS squatlon$4.19) by some effective turbulent
in Fig. 6, support this unexpected conclusion. In Fig. 6 onedamping termy; :
sees small oscillations @d? with period A (log, R§=1; this

In this section we show that even a rough account of the
bulent cascade in the MZS model already gives qualita-
tively correct analytical results.

1. MZS equations in the turbulent viscosity approximation

effect is a_n artifact of model d!scretlzatpn with spacing pa- Njj=— ijuj , ij=aKj|uj|, (5.93
rameterA =2 and has no physical meaning.

The reason for such strange behaviofRe) is that the
stationary zone velocity differencesV; in the unstable re- a~(a—c). (5.9p
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Here ij is chosen as the turnover frequency jpfeddies, g N2 _ 1+ ye—In(4lm)

«;|uj| with some dimensionless prefacter This prefactor is \4 g:K_K(|°92 Re—j)+|{B~— T e
evaluated in Eq(5.9b by equating the total rate of energy

dissipation in the model system with the effective turbulent 0 69 . 1.34

damping(5.99 and the energy flux toward small scales in Ki ——(log; Re—j)+B— K_K (5.14

the full shell model(see, e.g., Ref3]).
In the suggesteeffective turbulent dampingpproxima-  \here y-~0.58 is the Euler gamma constant.

tion, the MZS equation$4.19 take the form Thus, the MZS model describes the transition to the uni-

versal logarithmic profile with the von Kman constant
dv,
i

_ 2 2
W__Fjvjl_‘_dl(](uj*l_uj)’ (5106) In2 d3/2 d3/2
; ; KK= FT"’O 25— (5.13
u.
d_tJ — (1 +aKI|U|)U +2 (V- VJ+1)U
9] (5.10H D. Numerical analysis of the turbulent channel flow

in the MSZ model

These equations are different from the MZS equations in the This section is devoted to the numerical analysis of the
near-wall eddy approximation, E¢5.8), by only the term  MZS model of channel flow in the effective turbulent damp-

proportional toa. ing approximation, Eq(5.10. For simplicity we adopi;

For largeRein the near-wall region Eq5.10 has a sim- =G;. The PM damping factorG; was found according to
pler, scale invariant form, in which all geometry dependenteq. (3 17 as the matrix elements of the viscous operator on
factors are taken in their small scale lin.16): the real part of theM baS|s<I)J (y). This gives

dv, Gk} Gj=2"%;.
W —EV +1+dKJ(UJ 17— U ) (5113

The parameterd=4.6x10 2 and a=5.9X 10" 2 were cho-
sen to reproduce the experimental values of the universal

duj  [9x; dx constants<x~0.4 andB~5.2.
dt ( Re *aly; |)K Uit 2 (V VJ“)U In numerical analysis, 30 zones were sufficient to describe
(5.11b  the flows with Reynolds number up to °.0n order to find
_ the stationary solution of the full MSZ equatiofs.10 we
where kj=2!/2s. develop extremely stable and efficient iteration procedure,
based on the essential physics of the problem; see Appendix
2. Inertial interval solution E. In spite of the huge Reynolds numbers, the accuracy bet-
In this section we consider the stable stationary solutiorf€" than 10° was reached with about 100-200 iterations.
of Eq. (5.10, Actually, using our approach th#ZS model and the itera-
tion procedurg one can simulate turbulent wall-bounded
Vi Jd g fIc_>ws for arbitrarily large Rewith a very modest PC, even
Vi=—gez [a(Re)—j]+ 52 G j>3, (5.12 with a XT486PC at 40 MHz, 8 Mbytes of RAM.

1. Behavior of the zone velocities;\and y;
obtained in Appendix D.

Notice that the onlyRe dependent factor in Eq5.12) is
the position of the viscous cutof(Re), given by the Eqg.
(D6b). Countingj from gq(Re), one has Re independehM
velocities. In the physical space this corresponds to the uni
versality of the TBL profile measured in the “wall units”
y'=yRe

One can easily see that the set of zone velocite$2
linear inj in the inertial interval corresponds to the logarith-
mic profile of the mean velocity in the physical space:
V(y)~In(y ReL). Actually, by a direct calculation one shows
that the logarithmic profile

In Fig. 8, left panel, we ploPM velocitiesV; for different
Refrom 500 to 5< 1(%. One clearly sees the |nert|al interval,
where V; decrease linearly with in agreement with Eg.
(D2) As we mentioned above there is a “soft” viscous cut-
off, that involves last two zones. In order to demonstrate the
phenomenon of universality, in the right panel of Fig. 8 we
replot the same velocitieg; as functions of the “near-wall”
zone indexj —log, Reas suggested by E(.12. There is a
perfect collapse of all lines. Importantly, they collapse not
only in the inertial interval, but also in the dissipative cutoff
range. There is a non-negligible difference for the first two to
three zonesj=1,2 (see the inset in the right panehat is
caused by the non-negligible momentum influx in these

VIo9(y) = —In YR + B, (5.13 zones. This deviation is desc_:ribed by EG2).
L Figure 9 shows the magnitudes of the near-wall turbulent
eddies|u;| for the same set oRes. Again, the numerical
corresponds to the zone velocities results are in full agreement with our theoretical understand-

046308-17



L'VOV, POMYALOV, AND TIBERKEVICH PHYSICAL REVIEW E 68, 046308 (2003

50 i T T T T T T |
4\1\1\ 44
T <~ 404 42 i
:':,; 8 40
5 5 30 .
> 2 -24 -22
S s 201 .
S x
104 b
T O T T T T T ?
5 10 15 20 25 30 -30 -25 -20 -15 -10 -5 0
Zone index j "Wall" zone index j-log,Re

FIG. 8. PM velocitiesV; for different Reynolds numbeiReas a function of the zone indgxleft pane) and of the “near-wall” zone
index (j —log, Re (right pane). The lines from lower to upper correspond to J&e=9, 13, 17, 21, 25, and 29, respectively.

ing: the magnitudes of the near-wall eddies in the inertialuse more detailed shell representation of turbulent velocity
interval are constant, as it required by E®5) from the field, say with\=v2 or even\ =24 preserving the inter-
condition of the constancy of momentum flux. At the dissi- action range in the scale space unchanged. This modification
pative cutoff we observe a decrease wfinvolving 3—4  of our model is under construction and will be published
zones. A small decrease of at the first few shells is caused elsewhere.

by the nonzero momentum flux into these zones; in this re- We expect that more detailed models witkc2 will give

gion u; with good accuracy can be found from the mean profile closer to that given by the reduced model
5 with turbulent damping5.10), in which the energy dissipa-
pj=dui/2=1-0j.q. (5.16  tion is affected by the scale spacing. In this paper we are not

o ) ] interested in details of turbulent cascades and will use further
To check how the approximation of turbulent viscosity, EqQ.qply Egs.(5.10.

(5.9), affects the resulting mean velocity profile we compare

i(n Fig. 10 the;,aSOlmions of the flés” |\(/|))ZS equatiorté.19 2. Reconstruction of the mean velocity profile
black squargsand MZS equation$5.10 in the approxima- _ : '
tion of turbulent viscosity, Eq(5.9) (empty circles. These Equation(3.3) reconstructsPM velocity profile Vew(y)

solutions practically coincide except for three zongs ( from the set oV;. For the case of the channel flow one has

=12,13,14) near the viscous cutoff. In these zones just a few %

shells are excited in the full modé4.19 and the observed Veu(y)= 2, V@ (y),
difference is an artifact of discreteness of the scale space in =1

the shell modelgrecall that in the shell model.19 the
spacing parametex =2]. In the case when the details of
turbulent cascades near the wall are physically important D (y)= > Pmbam-1(Y), (5.17
(e.g., in turbulent flows with polymeric additivesne has to m=2)"1

2i-1

T T T

~

30+ .

Vj

20 .

Near-wall eddy velocities y;
N
PM - velocities

S N — N— 1 5 10 15 20
5 10 15 20 25 30 Zone index j

Zone index j

FIG. 10. Comparison of numerical solutions of the full MZS
FIG. 9. Magnitude of the near-wall turbulent eddies| as a  equations(4.19 (black squargsand the MZS equation€5.10 in
function of the zone indek for different Re The lines are marked the approximation of turbulent viscosit$.9 (empty circles. Re
as in Fig. 8. =10,
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FIG. 11. ReconstructeBM velocity profilesVpy,(y) for differ- FIG. 12. Collapse of the mean velocity profiles in the near-wall
ent Reynolds numbers. units. Different lines(from below to abovg correspond toRe

=21~1.3x10°, 2%, 2%, and 2°~5x1CP.

wherep,, and ¢,(y) for channel geometry are given by Eq. ) i i
(A13). The results of such reconstruction for a seRet are Y <100, while the experimental data are obtained yor
shown in Fig. 11. We see that reconstructemi-profiles = 10. As expected, in the overlap region, 4§ * <100, both
show all qualitative features of the “real” mean velocity pro- esults collapse. As we explained, our MZS model repro-
files in the well-developed turbulent regime; namely, theduces the asymptotical logarithmic profif6.13, and the
meanPM velocity is almost constant in the main part of the Parameters of the modet,andd were chosen to give known
flow [with centerline velocity increasing witReas In(Re)]. ~ values ofkx andB, that parametrize Ed5.13. Therefore,
As expected, all fall oV(y) occurs in a small region near 2S expected, the MZS profile, displayed in Fig. 13 as a solid
the walls. It is also clear that the width of this near-wall liné, coincides with the experimental date in the region of
region decreases &eincreases, in the same way as in real/arge enoughy™. The point is that the MZS dependence
flows. Veu(y™) practically coincides with the DNS and experi-

Figure 11 shows that th@M profiles have some non- Mental data in all regions of . It means that the MZS
physical “wiggles.” They originate from the incompleteness model corre'ctly degcrlbes the b'a3|c physics that affgcts the
of the PM basis. Indeed, thBM basis is constructed by Eq. Mmean velocity profile in the universal near-wall region of
(A2) from the completes basis with some prescribeh turk_)ul_ent boundz_iry layer near the flat plane. The MZ_S de-
dependence for eaghfunction. As a result, th&M expan- scnpuon of the viscous and the buffer layei@es not require
sion (5.17 can be understood as the Fourier expansion irRdjustable parameters
dm(y) = sin(koy,—; —y) with discontinuities of the Fourier am-
plitudes at the “zone boundariesh=2!, which produces
the wiggles in they representation. This artifact of the model ~ The total dissipation rate; in j-zone, Eq«(4.9a, can be
can be removed in different ways. The simplest one is to addplit into the dissipation rate in theM velocity subsystem

some functionV(y), orthogonal to allPM basis functions #; and the dissipation rate in the turbulent subsyséem

(and thus having zero momentynthe amplitude and the

shape of which are determined from the problem of minimi- 204

zation of discontinuities in the spectrum. It can be shown that

the result of such a “smoothing” is fully acceptable for most

purposes. 154
Figure 12 displays th®M velocities in the near-wall re-

gion y<H in log-linear scale for differenReés from ~1.3

X 10° to ~5x 1. The distance from the wall is measured

in near-wall viscous lengthsy™ =y/é=y ReH. The col-

4. Reconstruction of the profile of the energy dissipation

¥

v

Mean velocity
=y
1

lapse of profiles for different Reynolds numbers is evident. 51 Experimert
One can see the viscous sublagfer y"<10) and universal i
logarithmic profile(for y*=50). 0 : .
100 101 102 108

3. Comparison of the MZS universal mean velocity profile Distance in wall units y*=y Re/H

with experiment and DNS results ) )
FIG. 13. Comparison of the reconstructed MZS universal mean

In Fig. 13 we compared the reconstructed MZS universalelocity profile V(y*)/U ., (solid line in the region Ey*<10°)
mean velocity with the DNS results in a channel, R&0]  with the DNS results in a channel, available in Rgfo] for y*
and with the laboratory measurements Ré¢ up to 3.5 <10 (dashed ling and with the measurements in a pipe, taken
x 107, presented in Ref20]. The DNS data are available for from Ref.[20] for y*>10 (empty circles.
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Friction Reynolds number Re
Wall zone number j+
FIG. 15. Dependence of the total momentum of the fiBwn
FIG. 14. Mean velocitie¥;+ (black squargsand turbulent dis-  the Reynolds numbeRein channel flow.
sipation rate&f+ (empty circle$ in the wall-zone representation
j*, introduced by Eq(5.20. Solid line, reconstruction of theM  expected, at largRethe main energy dissipation occurs in a
velocity profile (in wall units) Vey(y™) vs distancey™ in wall  narrow near-wall regiony* <40. The dissipation rate at the

units, shown aboveRe=5x 10°. wall in our model is equal to
ej =& &, elyai=lim 87 /Re~0.21, Re>10¢,  (5.22
j—oo
e =TV.|2 & = Juil?
& =hilvil* 3 % etil Uil 18 \hich is reasonably close to the result for smaRer avail-

able in the DNS of Ref{21]:
In the turbulent viscosity approximation the effective damp-
ing is given by £|war=0.166, Re~200. (5.23

Vet = vj+ axjlujl. (519 Notice the difference irRes and that our result5.2? is
btained in the simple model with just two adjustable param-
ters, chosen to adjust very different characteristics of the
ow, the mean velocity profile. This allows one to consider
the reasonable correspondence of E§22) and (5.23 as

an argument in favor of our simple MZS model.

Figure 14 displays as empty circles the dissipation densit;Z
in turbulent subsystem, normalized by the near-wall Iengtt}I
scale, i.e.g; /Re as a function of the “wall zone number”
defined here as

jT=j—log, Re+2. (5.20 o
5. Re dependence of the global flow characteristics
The black squares in this figure show tR& velocities in C|ear|y, our approach allows one to evaluate various g|0_
the “wall-zone” representation, i.e., values ¥+ for the  pal characteristics of the turbulent wall bounded flows.
sameRe=5x1C%. The solid line is the logarithmic plot of The first example is th&®e dependence of the total mo-
the reconstructedfrom this set ofV;) PM velocity in the  mentum(i.e., total flux of the flow, shown in Fig. 15. There
physical space, i.eMpyu(y") vs logy", shown from above. s a laminar regime foRe<17, and a developed turbulent
As one sees, the solid line goes very close to the blackegime for, sayrRe>100. The “period-2” oscillations are an
squares, as it should according to the interpretation of thertifact of the model, caused by the discretization with the
PM velocities V;+ as a “physical” velocity at some point spacing parametex=2. These oscillations, however, are
within j* zone, as explained in Sec. llI B 4. As is clear from small and should be ignored. In principle, they can be re-
Fig. 14, the wall zone numbex$.20 are chosen to give a moved in more “advanced” versions of the MZS model with

very simple “correspondence rule”: few variables in each zone,V; ,,u; ,, responsible forr
. . n subzones of th¢ zone.
wall zone indexj " «<wall distancey™=2"" . The second example is tHee dependence of the total

(5.21 energy of the system, as well as parts of the energy, contain-

. . ... inginthe mean and turbulent subsystems, shown in Fig. 16.
This approach can be used to restore the spatial distribution The last, but not least, example is tRe dependence of

of various Eurbulent charafzteri§tics. In pa[tiClJJr|ar, we ca+n UNthe total energy dissipation and that for theand u sub-
derstggdaj+, presented in Fig. 14, as™(y") with y systems, shown in Fig. 17. Total energy dissipation is equal
=(27! ). As expected, the dissipation rateormalized, as to the total energy influx, i.e., to the total momentum of the
in Fig. 14, byRe is Reindependent aRe— . In this sense, flow. However, the distribution of energy dissipation be-
the results in Fig. 14 can be considered as universal. Aveen two subsystems is very interesting.
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increase ofV,; by ~In2. In dimensional units this corre-

1200 sponds to the increase ¥f by ~V_In2~In2\LVp.
1000 1
w VI. SUMMARY
800
3 We developed a multizone shell model for wall-bounded
lj'i’ el turbulent flows in a piecewise approximation, dividing the
4004 cross-sectional area into a sethf-log, Re jzones. In each
zone the turbulence is assumed to be homogeneous and is
200+ described in the framework of a shell model equation for the
C ] “turbulent” shell velocitiesu,(t). The mean velocity is de-
0100 A 10t 106 108 scribed by an additional set df zone variable¥/;(t), which
- allow us to reconstruct the mean velocity profile with the
Friction Reynolds number Re . . .
help of a specially designe@M basis.
FIG. 16. Dependence of the total ener@y), the energy of the The MZS model conserves the actual integrals of motion
meanV-subsystentB), and the energy of the turbulemsubsystem  Of the original NSE of the problengnergy and linear and
(C) on the Reynolds numbd&e angular momentarespects Galilean and “asymptotic” scale

invariance, the NSE type of nonlinearity; and, in a relatively
simple and analytically transparent manner describes the ba-

One clearly sees that some flow characteristics, like the. : : .
energy of the turbulent subsystem and the energy dissipatio%'IC physical phenomena in wall-bounded flows for a huge

in the mean flow subsystem remain finite for vanishing quidIﬂterval of Reynolds numbers. They includ® the laminar

. . . o velocity profile for Re<Re,; (2) its instability at Re
viscosity v . At the same time, other characteristics, such as_ Re,: (3) intermediate, nonuniversal mean velocity profile
the total linear momentum, the energy of the mean flow sub-

9y — .~ ~~at moderate Re(4) universal profile forRe>Re, in the
system, and the rate of energy dissipation increase mﬂmte%iSCOUS sublayer, buffer layer, and logarithmic-law region;
[like In(1/vy)], i.e., demonstrate a phenomenonvi$cous ' ' '

anomaly The MZS model clearly demonstrate that the g efg;t(lj?é s(ijpliattrilgrl:gogtc()f turbulent activity, of the rate of
physical reason for that anomaly is the separation in the The model also allows additional adaptation of the MZS

physical space of the external forcing and the friction: theequations for the first fewenergy containingshells to par-

external pressure gradient, that accelerates the flow, acts oRular flow geometrieglike channel, pipe, Couette flows

FZSCZVht%IgtCr?es\?e_i?sCt;ﬁgarngenavoefl(t)r::iet ﬂ?rv(\)/’mwi?:]lﬁ“?e]e frr(')(\::,'t%netc) which may be based on stability analysis of the laminar
’ P y 9 ‘regime or some other specific geometrically determined in-

acts only on the walls. To be able to maintain the consta ormation. This should improve description of the flow for
flux of the linear mechanical momentum toward the wall, the
moderate Re 1000.

amplitudes of the near-wall eddies of all scales, must be The model may also be generalized to the case of vis-

j independent. This immediately leads to a linear increase O(I,oelas,tic turbulent flowéby adding additional shell variables

V; with j, decreasing from the viscous cutoff valygtoward : L : .
I
the beginning of the cascade-1. Thus the value o¥/; is for the polymeric additivels particle laden suspensions, etc.

proportional to the total number of cascade stgps,1. De-
crease ol to one-half of its value adds one more step in the ACKNOWLEDGMENTS
inertial interval of the momentum cascade. This leads to an \ye thank Itamar Procaccia, Nikolai Nikitin, and Alex Ya-

khot for useful discussions. The support of the Israel Science

A Foundation governed by the Israeli Academy of Science is
o 50+ 7 gratefully acknowledged.
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5 i g APPENDIX A: PM BASIS, PROPERTIES,
% - AND INTERPRETATION
z C ] 1. Construction of the PM basis
(@]
e 209 1 To construct a “physically motivated” basis for descrip-
- B ] tion of the PM-velocities, which meets requirements of Sec.
Ly 3 lIB1, we consider two subsets of eigenfunctions of the
. Laplape_ .operato.rgll);](p) and (,b;](.p), satisfying the .ir)com-
I P LI P i pressibility condition. The no-slip boundary conditions are

o assumed in the cross section of the flow, with the constraints
Friction Reynolds number Re

—(o pt
FIG. 17. Dependence of the total energy dissipatidy energy Pm= (X, ) 70, (Ala)

dissipation in the meaW subsysten(B), and energy dissipation in B

the turbulentu subsysten{C) on the Reynolds numbd®e Rm=(R, ) #0, (Alb)
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dictated by Eq(3.2). Notice that both set#,., and ¢, are  These relations can be easily proven by projection of both
chosen here as real and orthonormal. sides of Eq(A9) onto the Laplace basig,, , using Eq.(A1)
Introduce the comple®M basis as follows: and the definition of théM functions®;(p), Eq. (A2).
Let us show that EqA5) follows from the obvious con-

R . o S\ . .
PR + o mo straint X,X) =1, after substitution ok from Eg. (A9a). Us-
®;(p) m;;. [pm¢m ! R; ¢m}' (A23) ing also the orthogonality condition&8) one gets
meS <2 " l<sm=<2i-1. (A2b) < o
’ 1=30)= 2 (¥ .9])
The normalization “radius’R; is chosen such that hir=1
! N ” " 1 -
(D] @)= (D], D)), (A3) =7 Zl (@ + D], @)+ @)
L=
where %
) (p)=Rd®,(p)], ! (p)=Im[®,(p)]. =2 5.
Denote We proved that alb; add up to unity according to EGA5).
;= (P ,‘I)j/):mES P, (A4) 3. PM expansions
&S5

Introduce thePM projector
We show below that
~ ((I)J 1f)
Peomif =2Re

® ‘I’j(P)
21 s5=1, (A5)
“

=ReX, s; {(®;,Hd(p), A10
which allows us to understarg] as a portion of the cross- 2 (P D) (AL0)

sectional area, occupied by theone. Then, the first of Egs.
(1.10 gives the definition of5;, the area of th¢ zone, that and define th&M velocity Vp\(p,t) as the projection of the
is consistent with the requiremeBf_,S;=S, . full field V(p,t) on thePM basis:

To find R; from Eq. (A3), compute also

Veum(p)=PomiV(p)}. (A11)
1
(@], @])= EszS R (A6)  Using the normalizatiortA8) one gets Eq(3.3), in which
j mes

Then SVi(D=(D;,V)=(®; Vo). (A12)

The expansion coefficientg;(t) are PM velocities in the
R=s' > R2. (A7)  zone representation.

me s Substitutingk and R from Egs.(A9) into the definitions

(3.2) of P and M, one gets with the help of Eq$3.3) the
2. Orthogonality and normalization conditions PM expansion of the linear iV integrals of motion, Egs.

(3.5). These equation give a proof of the statement that only

By constructionA2), (A3) the PM basis is orthogonal in the PM part of the full velocityV(p,t), Eq.(3.3), contributes

the sense .
to the mechanical momenta. The turbulent paf{p) does
(@), ®;)=2sAj;/, (A8a) not contribute to the linear integrals of motion and will be
considered as a part of the “turbulent ensemble,” described
(®F ,®;,)=0. (A8b) by the shell variablesi,(t).
The idea behind the choid@?2) is that the functionﬂ),—’ and 4. PM basis for the channel and pipe flows

(I)}’ form the exactexpansions of the uniform profile of unit

In the planar geometry, Fig. Ja=vVy and the functions
height @;) and of the linear profile®/): P g Y. Fig- =y

¢m in Eq. (A2) are given by
> ®/(p)=%, (A93) I (Y)=Rbom_1(Y),
| Dn(Y)=Zdom(Y),
; Ri®{(p)=-R. (A9b) Ity K (2H). (138
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pmzmzo.gl(zm— 1). (A13b)

For the pipe geometry,
Pn(P)=%m(p),  Pm(p)=8dn(p),  (Aldd)
®m(p)=Jo(kmp)/J1(KmR), (A14b)
Jo(knR)=0, pm=2/(KsR), (Al40)

whereé is the polar-angle unit vectoB( X,&L p), Jo(£) and

J1(&) are the Bessel functions of the zeroth and first order

and R is the radius of the pipe. The first of Eqe\l14c)

defines k,=¢,/R via zeros of the Bessel functions

ém: Jo(ém) =0.

APPENDIX B: EQUATION FOR THE LAMINAR
PM PROFILE

Here we present a proof that the lamin@M profile
V2u(p) given by Eq.(5.2) satisfies Eq(5.4).

To this end, we recall that the damping paramef.épaj2
are defined as matrix elements:

Giki=—s, (D] AD)). (B1)
Substituting this definition int@5.1),(5.2), we obtain
s P/ (p)
V8, (p)=—Re>, ———_. (B2)
pm(P) 2 (@], AD))
Then, the Laplacian 0¥3,, is equal to
S{AD{(p)
AVS,,(p)=—Re>, —1——, (B3)
pm(P 2 (@] AD))

Acting on this Laplacian with thé®M projector (A10), we
obtain

(DAD))

km} , (B4)

. S;
Pem{AVEy}=—ReX —JRe[cb

ik Sk
where one must distinguish the Reynolds numBay, from
the notation for the real part of something,{Rg. Note that
by construction differenPM functions®; belong to the dif-

ferent subspaces of the eigenfunctions of the Laplace opera-
tor. Also, the reakb{ and imaginary® parts of these func-

tions are orthogonal, and thus
(D AD])=Ay(P] ,AD)). (B5)

As a result, all nondiagonal terms in E&4) vanish, and we
obtain

Pem{AVY, 1=~ Reg D . (B6)

Finally, using propertyA9a), we obtain

PHYSICAL REVIEW E 68, 046308 (2003

Pem{AVS,}=—RegX, (B7)
which actually is Eq(5.4).
APPENDIX C: WALL-BOUNDED FLOWS IN THE
APPROXIMATION OF NEAR-WALL EDDIES (a=b=c=0)

In this appendix we analyze the MZS model in the ap-
proximation of near-wall eddies, Eg%.8). In the stationary
regime @/dt=0) only a finite numberrp—1)=0 of turbu-
lent velocities are nonzero, i.@;=0 for j=m. This number
depends orRe As it follows from Eq.(5.88, the PM veloci-
ties V; for j>m coincide with the laminar ones:

V;=V)=I;'~27%Re j>m=m(Re. (CI)
In the unstable regiop<<m, as follows from Eq(5.8b), the
zone velocity differenc\V;=V;—-V; ., coincides with its
critical value; see Eq5.5):

27j0]
Aj=2g;x7o;/d. (C2

This allows one to find alV; via the last velocity in the
unstable regiony,,:

V]:Vm+(Bm_ BJ)/Re,

i—-1

B, 2‘1 A (C3)
Multiplying Eq. (5.8 by s; and summing up fronj=1 to
j=m, one finds the equation for,, with the solution

1-0omia Dm
V= c ¢ C Re (C4a
m
Cu=2, SGjx’~2", (C4b
i=1
m
szj; ${Gj«7(Bpn—Bj)~2%™. (C40

Note that in spite of the large number of different parameters
(An,....Dy) all of them are provided with explicit expres-
sions and can be easily evaluated.

Now one finds the total linear mechanical momentim
(i.e., the total flux of the fluigof the flow from its definition
(4.6b and Eqs.(C1) and (C43 for V; for j<m and forj
>m:

Y sV9=E,Ret+F,/Re (C53

j=m+1

m
P= '21 SJV] +
i=
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(1= 0 p)? * S in which one can neglect the damping temi/Re This
En=——F7—"— , ives
m Cm j=m+1 GjKjZ g .
2]
m __ _
l1-0o D pi=—% = Sjr=1-0j41, (D1
Fu= >, sj<Bm—B;>—(g‘¢. (C5b) 2o J
=1 m

where o; is defined by Eq.(4.49. The substitution ofu;
So far we treated the last indexin the unstable zones as from Eq. (D1) in Eq. (5.110 gives an expression fo¥; ;
fixed. However, it depends on the Reynolds numiRernd  via V;. This allows one to findv; for any j outside the
is defined from the condition viscous region via some constam:

\/1 0'|+1

A o
Vin= Vs 1<AVE=22 V)= —3722 ' (D2)

which ensures that the turbulent velocity, will not be ex-  Forj>j, (wherej, is equal to, say, 3one can take in Eq.
cited, u,=0. This condition can be written as (D2) o= 2s;<1. One concludes that in the inertial interval
the PM velocities decrease linearly in

A, C,+D
Re2<1_0_ _mC m/(Gm K2 ) ER% (C6) Zl/iafj
m+1 m m+1Km+1 Vj:Vo"‘A_W_a i>is, (D3a)
Actually, there will be exactly fh— 1) excited turbulent ve-
locities u; , if ” o\l—0o
: 2 _ NS Tiwg (D3b)
Re, ;<Re<Re,. (C7) = Si

The analysis shows that this condition selects the inaex Here the geometry dependent constantas found by com-
for which the total momentur® [Eq. (C5)] has minimum  Parison of Eqs(D2) and(D3), and for different geometries it

value. evaluates to

Let us analyze the dependen¢ba of the total momen- N 27 channel
tum in the limit of extremely large Reynolds numbers, A~ —mX‘ A ' (D4)
InRe>1, and, respectively, large critical zone numberdn d 2.4, pipe.

this case we can use the scale invariant limit for all param-

eters: Equation(D3) can be directly obtained from the condition

of the constancy of the momentum flg&.12, which gives
E,=2""E, F,=2"F, Re,=2"R, (C8) u;= \2/d=const. (D5)

whereE, F, andR are some geometry dependent constantsThen, in the stationary case, E(.11h determines thg
Now for Reynolds numbers inside the ran@7) we can independent differenc¥;—V; ., necessary for keeping the
write in Eq. (C53 x(Re)=Re/(2™R), where 1/ x(Re) amplitudes of the near-wall eddies at the constant level. This

<1. Then? for large enougtRe[in the region of validity of ~ agrees with Eq(D3).

the scale invariant limitC8)], is given by In the derivation of Eqs(D2) and (D3) we cancelled in
Eqg. (5.10b uJ-:uJ* , assuming that; # 0. At a givenRethis

. E assumption is valid only foy<j,. Herejg is the zone index
P(Re)=x(Re)ER+ — (C9 of the last unstable zone, for which in Ed5.11b

X(Re)R d(Inu)/dt>0 atu;—0. To findj, we consider Eq(5.11h as

) ) ) an equation for a continuous indepand set its RHS to zero
Sincex(Re) is bounded between 1/2 and 1, the fi®9) is  \yith Ug=0:

bounded from above by one of the constants
R oF = 9% _ 8V Vgar)= V2a D6
[ER F F} Re 2Va Var)="5 (D6

=q(Re)=log, Re+log,[2+v2as/gy/d]. (D6b)

and does not grow infinitely for infinite Reynolds numbers; . L )
see Fig. 6. The indexj is then the integer part af.

The solution Eq(D2) has still an unknown constant,,.

APPENDIX D: SOLUTION OF EQS. (5.10 This constant can be found from the stationarity condition

(4.12,
Consider Eq(5.10. For log, Re>1, in the inertial interval -
of scales, all needed information contained in Eg.103 - [
o = siI'iVi=p =1, D7
may be obtained from E@4.13 for the momentum fluy; , P ,2’1 itivi=P ©7
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requiring that the total influx of the linear momentum, In the “laminar region” = | nax:
caused by the pressure gradient, must dissipate at the wall,

due to the viscous friction. The prodLE;Tj~21/Re There-
fore, the sum in Eq(D7) is dominated by the last few terms
with j~jo>], . This allows one to use the more simple Eq.
(D3) instead of Eq(D2):

jo

= > 2 Vo+A— 2a] (D8a)
4Re s=4 0 d37?
giof vy A 2200 D8b
~5Re s ot T4 (D8b)
V2a G Vot A 2V2aq(Re) D8
T Ja g\ — g (D8c)

Together with Eq(D3a) this gives the dependence gf on

V]:]'/FJ ) Uj:O, j>jmax- (EZ)
One can substituté; from Eq.(E19 to Eq.(E1b and get an
equation connecting the triag _,, u;, andu;, . Unfortu-
nately, a direct iteration procedure in this “straightforward”
equation is unstable and do not converge to the stationary
solution.

To find the stable, stationary solution of E¢E1) numeri-
cally, we develop a stable iteration procedure, which is based
on the physical understanding of these equations as describ-

ing the momentum flux fromp=1 toward largg in the “in-
teraction triadsV;, V;. 1, andu;. Denote asv(”, V{?), |
and u](") the solution of following three algebraic equations
on thej step in thepth iteration run:

TP =1+ di{[uf®, 12— [u{P' 1%},

j for the near-wall region, which is geometry independent;

see Eq(5.12.

Notice that in the derivation of ED2) we neglected in
Eq. (5.11b the viscous damping terrg\KjZ/Re with respect
to the turbulent one|u;| ;. This approximation fails near
the viscous cutoff, becauggx;/Rex2’ increases exponen-
tially toward largej, while a|u;| is approximately constant.
More detailed analysis shows that EB2) fails only for last
two j before the cutoff, and instead of a sharp cutoffj at
=]o there is a soft decrease ¥f in two zones neaj=j;
see Fig. 8.

APPENDIX E: ITERATION PROCEDURE FOR SOLVING
MZS EQUATIONS IN THE EFFECTIVE TURBULENT
DAMPING APPROXIMATION

Consider the MZS equatiorig.10 for some largeRe As
we discussed, there are two regiong,afamelyj <j,.xand
] =] max- In the “turbulent region,”j <j max, the laminar so-
lution, u;=0, is unstable with respect to excitation of turbu-
lent amplitudesu; and thus, in the stationary regima;
#0. Ford>0, without loss of generality ali; can be taken

real and positive definite. In the turbulent region the station-

ary velocitiesV; andu; satisfy the equations:

IVi=1+drj(uf_—ud), (Ela
7]+aKjUj:i(V'—V'+1),
20 1
U=0, j<jmax (E1b

Ty aViRi=1+dxg o {[uP P = [ufR V1%,

yj+aKju](p)

d -
Z—Uj[V}”)—VE‘i)l].

uP=0 for jpa>j=1, uf’=0. (E3
As the “initial condition” at p=0 we take the(unstable
laminar solution:

In the first step,j=1, of each iteration run one takes
ulP=0. FindingV{?, V) andu{” one takes in Eq(E3)
j=2, findsVP, VP andul? and so on until on somg,
step one gets negativr compley solution for uj(g). It

means that this amplitude is stable and has to be taken zero,

u](g) =0. Accordingly,j o= jmax- For all j>jnax 0ne takes the

laminar solutionV{P=1/";, u{®=0.

After that one begin the nexp+ 1, iteration run, starting
again from its first stepj=1. It can be shown, that the ve-
locities V(lp) form a monotonically decreasing sequence with
increasingp and are always positive. Since a limited from
below, monotonically decreasing sequence always have
some finite limit, this proves the convergence and stability of
our iteration scheme. The calculations show that for Rey-
nolds numberRe<10° the velocitiesV; and u; converge
(with accuracy about 1) after 100—200 iteration runs.
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